Suppr超能文献

通过电化学方法合成的聚(3,4-乙撑二氧噻吩)薄膜的厚度依赖性热性能。

Thickness dependent thermal performance of a poly(3,4-ethylenedioxythiophene) thin film synthesized an electrochemical approach.

作者信息

Chen Shen, Luan Tian, Di Chen, Lu Ming-Hui, Yan Xue-Jun, Song Chengyi, Deng Tao

机构信息

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 P. R. China

Center of Hydrogen Science, Shanghai Jiao Tong University 800 Dong Chuan Road Shanghai 200240 P. R. China.

出版信息

RSC Adv. 2022 Jan 12;12(3):1897-1903. doi: 10.1039/d1ra07991c. eCollection 2022 Jan 5.

Abstract

Polymer-based thermal interface materials (TIMs) have attracted wide attention in the field of thermal management because of their outstanding properties including light weight, low cost, corrosion resistance and easy processing. However, the low thermal conductivity (∼0.2 W m K) of the intrinsic polymer matrix largely degrades the overall thermal performance of polymer-based TIMs even those containing highly thermal conductive fillers. Hence, enhancing the intrinsic thermal conductivity of the polymer matrix is one of the most critical problems needed to be solved. This paper studies the thermal conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films fabricated cyclic voltammetry. By controlling the number of cycles in the electrochemical synthesis, different thickness of PEDOT films could be obtained. A time-domain thermoreflectance (TDTR) system was employed to evaluate the thermal performance of such as-prepared PEDOT films. We have demonstrated that a PEDOT film with thickness of 40 nm achieves the highest out-of-plane thermal conductivity of ∼0.60 W m K, which is almost three folds the thermal conductivity of commercially available pristine PEDOT:PSS film with similar thickness. The X-ray diffraction spectrum reveals that the PEDOT thin film with high crystallinity at the initial stage of electrochemical synthesis leads to enhanced thermal transportation. The findings in this work not only offer an opportunity to fabricate polymer materials exhibiting enhanced thermal conductivity, but also allow one to adjust the thermal performance of conducting polymers in practical applications.

摘要

基于聚合物的热界面材料(TIMs)因其具有重量轻、成本低、耐腐蚀和易于加工等优异性能,在热管理领域受到广泛关注。然而,即使是含有高导热填料的聚合物基TIMs,其本征聚合物基体的低导热率(约0.2W m⁻¹ K⁻¹)也会大大降低其整体热性能。因此,提高聚合物基体的本征导热率是需要解决的最关键问题之一。本文研究了通过循环伏安法制备的聚(3,4-乙撑二氧噻吩)(PEDOT)薄膜的导热率。通过控制电化学合成中的循环次数,可以获得不同厚度的PEDOT薄膜。采用时域热反射(TDTR)系统来评估如此制备的PEDOT薄膜的热性能。我们已经证明,厚度为40nm的PEDOT薄膜实现了约0.60W m⁻¹ K⁻¹的最高面外导热率,这几乎是具有相似厚度的市售原始PEDOT:PSS薄膜导热率的三倍。X射线衍射光谱表明,在电化学合成初始阶段具有高结晶度的PEDOT薄膜导致热传输增强。这项工作中的发现不仅为制造具有增强导热率的聚合物材料提供了机会,而且还使人们能够在实际应用中调节导电聚合物的热性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec9/8979183/78b22759704e/d1ra07991c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验