Khudiakov V, Pukhov A
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
Phys Rev E. 2022 Mar;105(3-2):035201. doi: 10.1103/PhysRevE.105.035201.
We present an electron injection scheme for plasma wakefield acceleration. The method is based on a recently proposed technique of fast electron generation via laser-solid interaction: a femtosecond laser pulse with the energy of tens of mJ hitting a dense plasma target at 45^{∘} angle expels a well collimated bunch of electrons and accelerates these close to the specular direction up to several MeVs. We study trapping of these fast electrons by a quasilinear wakefield excited by an external beam driver in a surrounding low density plasma. This configuration can be relevant to the AWAKE experiment at CERN. We vary different injection parameters: the phase and angle of injection, the laser pulse energy. An approximate trapping condition is derived for a linear axisymmetric wake. It is used to optimize the trapped charge and is verified by three-dimensional particle-in-cell simulations. It is shown that a quasilinear plasma wave with the accelerating field ∼ 2.5 GV/m can trap electron bunches with ∼ 100 pC charge, ∼60μm transverse normalized emittance and accelerate them to energies of several GeV with the spread ≲ 1% after 10 m..
我们提出了一种用于等离子体尾场加速的电子注入方案。该方法基于最近提出的通过激光与固体相互作用产生快速电子的技术:能量为数十毫焦的飞秒激光脉冲以45°角撞击致密等离子体靶,会喷出一束准直良好的电子,并将这些电子在接近镜面反射方向上加速到几兆电子伏特。我们研究了由外部束流驱动器在周围低密度等离子体中激发的准线性尾场对这些快速电子的俘获情况。这种配置可能与欧洲核子研究组织(CERN)的AWAKE实验相关。我们改变不同的注入参数:注入的相位和角度、激光脉冲能量。推导了线性轴对称尾场的近似俘获条件。它用于优化俘获电荷,并通过三维粒子模拟进行验证。结果表明,加速场约为2.5 GV/m的准线性等离子体波可以俘获电荷约为100 pC、横向归一化发射度约为60μm的电子束,并在10米后将它们加速到几GeV的能量,能量 spread≲1% 。