Brown Rachel M, Gruijters Stefan L K, Kotz Sonja A
Institute of Psychology, RWTH Aachen University, Aachen, Germany.
Faculty of Psychology, Open University of the Netherlands, Heerlen, The Netherlands.
J Gerontol B Psychol Sci Soc Sci. 2022 Sep 1;77(9):1580-1591. doi: 10.1093/geronb/gbac062.
Although the aging brain is typically characterized by declines in a variety of cognitive functions, there has been growing attention to cognitive functions that may stabilize or improve with age. We integrate evidence from behavioral, computational, and neurological domains under the hypothesis that over the life span the brain becomes more effective at predicting (i.e., utilizing knowledge) compared to learning. Moving beyond mere description of the empirical literature-with the aim of arriving at a deeper understanding of cognitive aging-we provide potential explanations for a learning-to-prediction shift based on evolutionary models and principles of senescence and plasticity. The proposed explanations explore whether the occurrence of a learning-to-prediction shift can be explained by (changes in) the fitness effects of learning and prediction over the life span. Prediction may optimize (a) the allocation of limited resources across the life span, and/or (b) late-life knowledge transfer (social learning). Alternatively, late-life prediction may reflect a slower decline in prediction compared to learning. By discussing these hypotheses, we aim to provide a foundation for an integrative neurocognitive-evolutionary perspective on aging and to stimulate further theoretical and empirical work.
虽然衰老的大脑通常表现为各种认知功能的衰退,但人们越来越关注那些可能随年龄增长而保持稳定或改善的认知功能。我们整合了行为、计算和神经学领域的证据,基于这样一种假设:在整个生命周期中,与学习相比,大脑在预测(即利用知识)方面变得更有效。超越对实证文献的简单描述,旨在更深入地理解认知衰老,我们基于进化模型以及衰老和可塑性原理,为从学习到预测的转变提供了潜在解释。所提出的解释探讨了从学习到预测的转变是否可以通过生命周期中学习和预测的适应性效应(变化)来解释。预测可能会优化(a)整个生命周期中有限资源的分配,和/或(b)晚年的知识传递(社会学习)。或者,晚年的预测可能反映出与学习相比,预测能力下降得更慢。通过讨论这些假设,我们旨在为衰老的综合神经认知 - 进化视角奠定基础,并激发进一步的理论和实证研究工作。