Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
Chemosphere. 2022 Aug;300:134617. doi: 10.1016/j.chemosphere.2022.134617. Epub 2022 Apr 14.
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, FeO NPs and amino-functionalized analogue (FeO-NH NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
氧化铁纳米粒子(IONPs)是源自交通排放、铁矿石开采、煤炭燃烧和发动机碎片熔融等过程的空气中颗粒物的最重要成分之一。一旦 IONPs 进入呼吸道并沉积在肺泡中,它们可能会与分布在肺泡衬里的肺表面活性剂(PS)相互作用。因此,有必要研究吸入的 IONPs 和 PS 的相互作用,这有助于了解 IONPs 对呼吸道健康造成的健康风险。我们使用二棕榈酰磷脂酰胆碱(DPPC)作为 PS 的主要成分的脂质模型,探索了 DPPC 与典型的 IONPs、FeO NPs 和氨基功能化类似物(FeO-NH NPs)的相互作用。DPPC 很容易吸附在两种 IONPs 的表面上。尽管 DPPC 冠降低了 IONPs 的细胞摄取,但与原始 IONPs 相比,IONPs@DPPC 复合物对 RAW 264.7 巨噬细胞的细胞毒性更高。机制研究表明,IONPs 与细胞内的过氧化氢反应,促进芬顿反应,生成羟基自由基。铁离子可以氧化脂质形成脂质过氧化物,而脂质氢过氧化物会分解生成羟基自由基,这进一步促进细胞氧化应激、脂质积累、泡沫细胞形成和炎症因子的释放。这些发现表明了冠状成分氧化的现象,这导致了 IONPs 诱导的细胞毒性。本研究在分子水平上提供了 IONPs 的一种全新的毒理学机制,有助于进一步了解 IONPs 的不良影响。