Fan Yonghui, Wang Yalin
Arizona State University, Tempe, Arizona.
IEEE Winter Conf Appl Comput Vis. 2022 Jan;2022:2743-2752. doi: 10.1109/wacv51458.2022.00280. Epub 2022 Feb 15.
Bayesian learning with Gaussian processes demonstrates encouraging regression and classification performances in solving computer vision tasks. However, Bayesian methods on 3D manifold-valued vision data, such as meshes and point clouds, are seldom studied. One of the primary challenges is how to effectively and efficiently aggregate geometric features from the irregular inputs. In this paper, we propose a hierarchical Bayesian learning model to address this challenge. We initially introduce a kernel with the properties of geometry-awareness and intra-kernel convolution. This enables geometrically reasonable inferences on manifolds without using any specific hand-crafted feature descriptors. Then, we use a Gaussian process regression to organize the inputs and finally implement a hierarchical Bayesian network for the feature aggregation. Furthermore, we incorporate the feature learning of neural networks with the feature aggregation of Bayesian models to investigate the feasibility of jointly learning on manifolds. Experimental results not only show that our method outperforms existing Bayesian methods on manifolds but also demonstrate the prospect of coupling neural networks with Bayesian networks.
基于高斯过程的贝叶斯学习在解决计算机视觉任务时展现出了令人鼓舞的回归和分类性能。然而,针对三维流形值视觉数据(如网格和点云)的贝叶斯方法却很少被研究。其中一个主要挑战是如何有效地从不规则输入中聚合几何特征。在本文中,我们提出了一种分层贝叶斯学习模型来应对这一挑战。我们首先引入了一种具有几何感知和内核内卷积特性的内核。这使得在不使用任何特定手工制作的特征描述符的情况下,能够在流形上进行几何上合理的推理。然后,我们使用高斯过程回归来组织输入,最后实现一个用于特征聚合的分层贝叶斯网络。此外,我们将神经网络的特征学习与贝叶斯模型的特征聚合相结合,以研究在流形上联合学习的可行性。实验结果不仅表明我们的方法在流形上优于现有的贝叶斯方法,还展示了将神经网络与贝叶斯网络相结合的前景。