Suppr超能文献

流形上的几何感知分层贝叶斯学习

Geometry-Aware Hierarchical Bayesian Learning on Manifolds.

作者信息

Fan Yonghui, Wang Yalin

机构信息

Arizona State University, Tempe, Arizona.

出版信息

IEEE Winter Conf Appl Comput Vis. 2022 Jan;2022:2743-2752. doi: 10.1109/wacv51458.2022.00280. Epub 2022 Feb 15.

Abstract

Bayesian learning with Gaussian processes demonstrates encouraging regression and classification performances in solving computer vision tasks. However, Bayesian methods on 3D manifold-valued vision data, such as meshes and point clouds, are seldom studied. One of the primary challenges is how to effectively and efficiently aggregate geometric features from the irregular inputs. In this paper, we propose a hierarchical Bayesian learning model to address this challenge. We initially introduce a kernel with the properties of geometry-awareness and intra-kernel convolution. This enables geometrically reasonable inferences on manifolds without using any specific hand-crafted feature descriptors. Then, we use a Gaussian process regression to organize the inputs and finally implement a hierarchical Bayesian network for the feature aggregation. Furthermore, we incorporate the feature learning of neural networks with the feature aggregation of Bayesian models to investigate the feasibility of jointly learning on manifolds. Experimental results not only show that our method outperforms existing Bayesian methods on manifolds but also demonstrate the prospect of coupling neural networks with Bayesian networks.

摘要

基于高斯过程的贝叶斯学习在解决计算机视觉任务时展现出了令人鼓舞的回归和分类性能。然而,针对三维流形值视觉数据(如网格和点云)的贝叶斯方法却很少被研究。其中一个主要挑战是如何有效地从不规则输入中聚合几何特征。在本文中,我们提出了一种分层贝叶斯学习模型来应对这一挑战。我们首先引入了一种具有几何感知和内核内卷积特性的内核。这使得在不使用任何特定手工制作的特征描述符的情况下,能够在流形上进行几何上合理的推理。然后,我们使用高斯过程回归来组织输入,最后实现一个用于特征聚合的分层贝叶斯网络。此外,我们将神经网络的特征学习与贝叶斯模型的特征聚合相结合,以研究在流形上联合学习的可行性。实验结果不仅表明我们的方法在流形上优于现有的贝叶斯方法,还展示了将神经网络与贝叶斯网络相结合的前景。

相似文献

1
Geometry-Aware Hierarchical Bayesian Learning on Manifolds.流形上的几何感知分层贝叶斯学习
IEEE Winter Conf Appl Comput Vis. 2022 Jan;2022:2743-2752. doi: 10.1109/wacv51458.2022.00280. Epub 2022 Feb 15.
2
Mesh Neural Networks Based on Dual Graph Pyramids.基于双图金字塔的网格神经网络。
IEEE Trans Vis Comput Graph. 2024 Jul;30(7):4211-4224. doi: 10.1109/TVCG.2023.3257035. Epub 2024 Jun 27.
3
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.基于高斯 RBF 核的黎曼流形上的核方法。
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
7
Deep Efficient Continuous Manifold Learning for Time Series Modeling.用于时间序列建模的深度高效连续流形学习
IEEE Trans Pattern Anal Mach Intell. 2024 Jan;46(1):171-184. doi: 10.1109/TPAMI.2023.3320125. Epub 2023 Dec 5.
8
Learning of 3D Graph Convolution Networks for Point Cloud Analysis.用于点云分析的三维图卷积网络研究
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4212-4224. doi: 10.1109/TPAMI.2021.3059758. Epub 2022 Jul 1.

本文引用的文献

1
Convolutional Bayesian Models for Anatomical Landmarking on Multi-Dimensional Shapes.用于多维形状解剖地标定位的卷积贝叶斯模型
Med Image Comput Comput Assist Interv. 2020;12264:786-796. doi: 10.1007/978-3-030-59719-1_76. Epub 2020 Sep 29.
3
Algorithms to automatically quantify the geometric similarity of anatomical surfaces.自动量化解剖表面几何相似性的算法。
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18221-6. doi: 10.1073/pnas.1112822108. Epub 2011 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验