AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA.
AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA.
Bioorg Med Chem. 2022 Jun 1;63:116743. doi: 10.1016/j.bmc.2022.116743. Epub 2022 Apr 11.
The voltage-gated sodium channel Na1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Na1.7 to pain in humans. Our effort to identify selective, CNS-penetrant Na1.7 blockers with oral activity, improved selectivity, good drug-like properties, and safety led to the discovery of 2-substituted quinolines and quinolones as potent small molecule Na1.7 blockers. The design of these molecules focused on maintaining potency at Na1.7, improving selectivity over the hERG channel, and overcoming phospholipidosis observed with the initial leads. The structure-activity relationship (SAR) studies leading to the discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) are described herein. ABBV-318 displayed robust in vivo efficacy in both inflammatory and neuropathic rodent models of pain. ABBV-318 also inhibited Na1.8, another sodium channel isoform that is an active target for the development of new pain treatments.
电压门控钠离子通道 Na1.7 是治疗疼痛的一个有吸引力的靶点,因为遗传证据表明 Na1.7 与人类疼痛之间存在高度的靶标验证。我们努力寻找具有选择性、可穿透中枢神经系统的口服活性 Na1.7 阻滞剂,提高选择性、良好的药物样性质和安全性,这导致了 2-取代的喹啉和喹诺酮类化合物作为有效的小分子 Na1.7 阻滞剂的发现。这些分子的设计重点是保持对 Na1.7 的效力,提高对 hERG 通道的选择性,并克服初始先导化合物中观察到的磷脂化。本文描述了导致发现(R)-(3-氟吡咯烷-1-基)(6-((5-(三氟甲基)吡啶-2-基)氧基)喹啉-2-基)甲酮(ABBV-318)的构效关系(SAR)研究。ABBV-318 在炎症和神经病理性啮齿动物疼痛模型中均显示出强大的体内疗效。ABBV-318 还抑制了 Na1.8,这是另一种钠离子通道同工型,也是开发新的疼痛治疗方法的有效靶点。