Losacco Gioacchino Luca, Hicks Michael B, DaSilva Jimmy O, Wang Heather, Potapenko Miraslava, Tsay Fuh-Rong, Ahmad Imad A Haidar, Mangion Ian, Guillarme Davy, Regalado Erik L
Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA.
School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
Anal Bioanal Chem. 2022 May;414(12):3581-3591. doi: 10.1007/s00216-022-03982-z. Epub 2022 Apr 20.
Bioprocess development of increasingly challenging therapeutics and vaccines requires a commensurate level of analytical innovation to deliver critical assays across functional areas. Chromatography hyphenated to numerous choices of detection has undeniably been the preferred analytical tool in the pharmaceutical industry for decades to analyze and isolate targets (e.g., APIs, intermediates, and byproducts) from multicomponent mixtures. Among many techniques, ion exchange chromatography (IEX) is widely used for the analysis and purification of biopharmaceuticals due to its unique selectivity that delivers distinctive chromatographic profiles compared to other separation modes (e.g., RPLC, HILIC, and SFC) without denaturing protein targets upon isolation process. However, IEX method development is still considered one of the most challenging and laborious approaches due to the many variables involved such as elution mechanism (via salt, pH, or salt-mediated-pH gradients), stationary phase's properties (positively or negatively charged; strong or weak ion exchanger), buffer type and ionic strength as well as pH choices. Herein, we introduce a new framework consisting of a multicolumn IEX screening in conjunction with computer-assisted simulation for efficient method development and purification of biopharmaceuticals. The screening component integrates a total of 12 different columns and 24 mobile phases that are sequentially operated in a straightforward automated fashion for both cation and anion exchange modes (CEX and AEX, respectively). Optimal and robust operating conditions are achieved via computer-assisted simulation using readily available software (ACD Laboratories/LC Simulator), showcasing differences between experimental and simulated retention times of less than 0.5%. In addition, automated fraction collection is also incorporated into this framework, illustrating the practicality and ease of use in the context of separation, analysis, and purification of nucleotides, peptides, and proteins. Finally, we provide examples of the use of this IEX screening as a framework to identify efficient first dimension (D) conditions that are combined with MS-friendly RPLC conditions in the second dimension (D) for two-dimensional liquid chromatography experiments enabling purity analysis and identification of pharmaceutical targets.
开发日益具有挑战性的治疗药物和疫苗的生物工艺,需要相应水平的分析创新,以便在各个功能领域提供关键检测方法。几十年来,与多种检测方式联用的色谱法一直是制药行业分析和从多组分混合物中分离目标物(如活性药物成分、中间体和副产物)的首选分析工具。在众多技术中,离子交换色谱法(IEX)因其独特的选择性而被广泛用于生物制药的分析和纯化,与其他分离模式(如反相液相色谱法、亲水作用液相色谱法和超临界流体色谱法)相比,它能提供独特的色谱图,且在分离过程中不会使蛋白质目标物变性。然而,由于涉及诸多变量,如洗脱机制(通过盐、pH值或盐介导的pH梯度)、固定相性质(带正电荷或负电荷;强离子交换剂或弱离子交换剂)、缓冲液类型和离子强度以及pH值选择,IEX方法开发仍被认为是最具挑战性和最费力的方法之一。在此,我们介绍一种新的框架,该框架由多柱IEX筛选与计算机辅助模拟相结合,用于生物制药的高效方法开发和纯化。筛选部分总共集成了12种不同的色谱柱和24种流动相,它们以直接的自动化方式依次用于阳离子和阴离子交换模式(分别为CEX和AEX)。通过使用现成的软件(ACD Laboratories/LC Simulator)进行计算机辅助模拟,可实现最佳且稳健的操作条件,实验保留时间与模拟保留时间之间的差异小于0.5%。此外,该框架还纳入了自动馏分收集功能,展示了其在核苷酸、肽和蛋白质的分离、分析和纯化方面的实用性和易用性。最后,我们提供了使用这种IEX筛选作为框架的示例,以确定有效的一维(D)条件,并将其与二维(D)中对质谱友好的反相液相色谱条件相结合,用于二维液相色谱实验,从而实现药物目标物的纯度分析和鉴定。