Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.
Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.
ACS Appl Mater Interfaces. 2022 May 4;14(17):20062-20072. doi: 10.1021/acsami.2c03109. Epub 2022 Apr 20.
Material manufacturing strategies that use little energy, valorize waste, and result in degradable products are urgently needed. Strategies that transform abundant biomass into functional materials form one approach to these emerging manufacturing techniques. From a biological standpoint, morphogenesis of biological tissues is a "manufacturing" mode without energy-intensive processes, large carbon footprints, and toxic wastes. Inspired by biological morphogenesis, we propose a manufacturing strategy by embedding living (Baker's yeast) within a synthetic acrylic hydrogel matrix. By culturing the living materials in media derived from bread waste, encapsulated yeast cells can proliferate, resulting in a dramatic dry mass and volume increase of the whole living material. After growth, the final material is up to 96 wt % biomass and 590% larger in volume than the initial object. By digitally programming the cell viability through UV irradiation or photodynamic inactivation, the living materials can form complex user-defined relief surfaces or 3D objects during growth. Ultimately, the grown structures can also be designed to be degradable. The proposed living material manufacturing strategy cultured from biowaste may pave the way for future ecologically friendly manufacturing of materials.
急需采用低能耗、废物增值和可降解产品的材料制造策略。将丰富的生物质转化为功能材料的策略构成了这些新兴制造技术的一种方法。从生物学的角度来看,生物组织的形态发生是一种“制造”模式,没有能源密集型的过程、巨大的碳足迹和有毒废物。受生物形态发生的启发,我们提出了一种制造策略,即将活的(面包酵母)嵌入合成的丙烯酸水凝胶基质中。通过在源自面包废物的培养基中培养活体材料,包封的酵母细胞可以增殖,导致整个活体材料的干质量和体积显著增加。生长后,最终材料的生物量高达 96wt%,体积比初始物体大 590%。通过数字编程通过 UV 照射或光动力失活来控制细胞活力,活体材料可以在生长过程中形成复杂的用户定义的浮雕表面或 3D 对象。最终,所生长的结构也可以设计为可降解的。这种从生物废料中培养的活体材料制造策略可能为未来生态友好型材料的制造铺平道路。