Suppr超能文献

前瞻性的长期连续水质监测路线图:关键评论中的瓶颈、创新和展望。

Forward-Looking Roadmaps for Long-Term Continuous Water Quality Monitoring: Bottlenecks, Innovations, and Prospects in a Critical Review.

机构信息

Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.

Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.

出版信息

Environ Sci Technol. 2022 May 3;56(9):5334-5354. doi: 10.1021/acs.est.1c07857. Epub 2022 Apr 20.

Abstract

Long-term continuous monitoring (LTCM) of water quality can bring far-reaching influences on water ecosystems by providing spatiotemporal data sets of diverse parameters and enabling operation of water and wastewater treatment processes in an energy-saving and cost-effective manner. However, current water monitoring technologies are deficient for long-term accuracy in data collection and processing capability. Inadequate LTCM data impedes water quality assessment and hinders the stakeholders and decision makers from foreseeing emerging problems and executing efficient control methodologies. To tackle this challenge, this review provides a forward-looking roadmap highlighting vital innovations toward LTCM, and elaborates on the impacts of LTCM through a three-hierarchy perspective: data, parameters, and systems. First, we demonstrate the critical needs and challenges of LTCM in natural resource water, drinking water, and wastewater systems, and differentiate LTCM from existing short-term and discrete monitoring techniques. We then elucidate three steps to achieve LTCM in water systems, consisting of data acquisition (water sensors), data processing (machine learning algorithms), and data application (with modeling and process control as two examples). Finally, we explore future opportunities of LTCM in four key domains, water, energy, sensing, and data, and underscore strategies to transfer scientific discoveries to general end-users.

摘要

长期连续水质监测(LTCM)可以通过提供多样化参数的时空数据集并以节能和经济有效的方式运行水和废水处理过程,对水生态系统产生深远的影响。然而,当前的水质监测技术在数据采集和处理能力方面的长期准确性存在不足。不足的 LTCM 数据会妨碍水质评估,并阻碍利益相关者和决策者预见新出现的问题和执行有效的控制方法。为了应对这一挑战,本综述提供了一个前瞻性的路线图,强调了 LTCM 的重要创新,并通过数据、参数和系统三个层次的视角阐述了 LTCM 的影响。首先,我们展示了自然资源水、饮用水和废水系统中 LTCM 的关键需求和挑战,并将 LTCM 与现有的短期和离散监测技术区分开来。然后,我们阐述了在水系统中实现 LTCM 的三个步骤,包括数据采集(水传感器)、数据处理(机器学习算法)和数据应用(以建模和过程控制为例)。最后,我们探讨了 LTCM 在水、能源、传感和数据四个关键领域的未来机遇,并强调了将科学发现转化为普通最终用户的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验