Suppr超能文献

机器学习构建颜色特征,以加速长期连续水质监测的发展。

Machine learning constructs color features to accelerate development of long-term continuous water quality monitoring.

机构信息

School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China.

School of Environmental Science and Engineering South China University of Technology, Guangzhou 510006, China.

出版信息

J Hazard Mater. 2024 Jan 5;461:132612. doi: 10.1016/j.jhazmat.2023.132612. Epub 2023 Sep 22.

Abstract

Long-term continuous water quality monitoring (LTCM) is crucial to ensure the safety of water resources. However, lab-based pollutant detection via machine learning (ML) usually involves colorimetric materials or sensors, and it cannot be ignored that sensor limitations prevent their use for LTCM. To address this challenge, we propose a novel method that leverages image recognition to establish a relationship between pollutant concentration and color. By extracting efficient color variation features from raw pixel matrices using a combination of Kmeans clustering and RGB average features, the concentrations of pollutants that are difficult to distinguish by the naked eyes can be directly captured without the need for sensors and preprocessing. Four ML models (XGBoost, Linear, support vector regression (SVR), and Ridge) achieved up to a 95.9% increase in coefficient of determination (R) compared to principal component analysis (PCA). In the prediction of the concentration of simulated pollutants such as Cu, Co, Rhodamine B, and the concentration of Cr(VI) in actual electroplating wastewater, natural resource water and drinking water, over 95% R was achieved. The method reported in our work can effectively capture subtle color changes that cannot be observed by the naked eyes without any preprocessing of water samples, providing a reliable method for LTCM.

摘要

长期连续水质监测(LTCM)对于确保水资源安全至关重要。然而,基于实验室的机器学习(ML)污染物检测通常涉及比色材料或传感器,并且不能忽视传感器的局限性限制了它们在 LTCM 中的使用。为了解决这一挑战,我们提出了一种新方法,利用图像识别来建立污染物浓度与颜色之间的关系。通过使用 Kmeans 聚类和 RGB 平均特征的组合从原始像素矩阵中提取有效的颜色变化特征,可以直接捕捉到肉眼难以区分的污染物浓度,而无需传感器和预处理。与主成分分析(PCA)相比,四种 ML 模型(XGBoost、线性、支持向量回归(SVR)和 Ridge)的决定系数(R)最高提高了 95.9%。在预测模拟污染物(如 Cu、Co、Rhodamine B 和实际电镀废水中的 Cr(VI)浓度)以及天然水资源和饮用水的浓度时,超过 95%的 R 得到了实现。我们工作中报道的方法可以在不对水样进行任何预处理的情况下有效捕捉肉眼无法观察到的细微颜色变化,为 LTCM 提供了一种可靠的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验