Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing 400037, China.
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
ACS Appl Mater Interfaces. 2022 May 4;14(17):19975-19987. doi: 10.1021/acsami.1c25180. Epub 2022 Apr 20.
Benefiting from the evolution of nanotechnology, the combination therapy by gene interference and reactive oxygen species (ROS) scavenging are expected, which holds great potential in inflammatory bowel disease (IBD) therapy. However, the functional integration of different therapeutic modules through interface modification of gene vectors for safe and efficient treatment is urgently needed. Herein, we present a catechol chemistry-mediated core-shell nanoplatform for ROS scavenging-mediated oxidative stress alleviation and siRNA-mediated gene interference in a dextran sulfate sodium (DSS)-induced colitis model. The nanoplatform is constructed by employing mesoporous polydopamine nanoparticles (MPDA NPs) with surface modification of amines as the porous core for TNF-α-siRNA loading (31 wt %) and exerts an antioxidant function, while PDA-induced biomineralization of the calcium phosphate (CaP) coating is used as the pH-sensitive protective shell to prevent siRNA from premature release. The CaP layer degraded under weakly acidic subcellular conditions (lysosomes); thus, the synergistic integration of catechol and cation moieties on the exposed surface of MPDA resulted in an efficient lysosomal escape. Subsequently, effective ROS scavenging caused by the electron-donating ability of MPDA and efficient knocking down (40.5%) of tumor necrosis factor-α (TNF-α) sufficient cytosolic gene delivery resulted in a synergistic anti-inflammation therapeutic effect both and . This work establishes the first paradigm of synergistic therapy in IBD by ROS scavenging and gene interference.
受益于纳米技术的发展,基因干扰和活性氧(ROS)清除的联合治疗有望在炎症性肠病(IBD)治疗中发挥重要作用。然而,通过基因载体的界面修饰实现不同治疗模块的功能整合,以实现安全有效的治疗,是非常有必要的。在此,我们提出了一种儿茶酚化学介导的核壳纳米平台,用于 ROS 清除介导的氧化应激缓解和载有 TNF-α-siRNA 的基因干扰,以治疗葡聚糖硫酸钠(DSS)诱导的结肠炎模型。该纳米平台是通过表面修饰胺的介孔聚多巴胺纳米粒子(MPDA NPs)构建的,作为多孔核心负载 TNF-α-siRNA(31wt%)并发挥抗氧化功能,而 PDA 诱导的磷酸钙(CaP)涂层的生物矿化则作为 pH 敏感的保护性外壳,防止 siRNA 的过早释放。在弱酸性的亚细胞条件下(溶酶体),CaP 层会降解;因此,暴露在 MPDA 表面的儿茶酚和阳离子部分的协同整合导致了有效的溶酶体逃逸。随后,MPDA 的供电子能力有效清除 ROS,并实现了肿瘤坏死因子-α(TNF-α)的高效敲低(40.5%),从而实现了有效的细胞内基因递送,这导致了协同的抗炎治疗效果。本研究建立了通过 ROS 清除和基因干扰协同治疗 IBD 的首例范例。