Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA.
Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA.
J Physiol. 2022 Jun;600(11):2747-2763. doi: 10.1113/JP282815. Epub 2022 May 13.
The descending auditory system modulates the ascending system at every level. The final descending, or efferent, stage comprises lateral olivocochlear and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC-mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB-MOC synapses exhibit short-term depression, suggesting reduced MNTB-MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound-evoked activity in MNTB neurons in vivo, MNTB-MOC synapses may be tonically depressed. To probe this, we characterized short-term plasticity of MNTB-MOC synapses in mouse brain slices. We mimicked in vivo-like temperature and extracellular calcium conditions, and in vivo-like activity patterns of fast synaptic activation rates, sustained activation and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, postsynaptic currents in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo, MNTB inhibition of MOC neurons persists despite tonic synaptic depression. KEY POINTS: Inhibitory synapses from the medial nucleus of the trapezoid body (MNTB) onto medial olivocochlear (MOC) neurons exhibit short-term plasticity that is sensitive to calcium and temperature, with enhanced synaptic depression occurring at higher calcium concentrations and at room temperature. High rates of background synaptic activity that mimic the upper limits of spontaneous MNTB activity cause tonic synaptic depression of MNTB-MOC synapses that limits further synaptic inhibition. High rates of activity at MNTB-MOC synapses cause synaptic summation with concurrent depression to yield a response with an initial large amplitude that decays to a tonic inhibition.
下行听觉系统在各个水平上调节上行系统。最后的下行或传出阶段包括外侧橄榄耳蜗和内侧橄榄耳蜗(MOC)神经元。腹侧脑干中的 MOC 体投射轴突到耳蜗,与外毛细胞(OHC)形成突触,抑制 OHC 介导的耳蜗放大。MOC 抑制 OHC 功能与声音强度变化、 salient 刺激检测、注意力和防止声音创伤有关。因此,声音激发 MOC 神经元,为耳蜗提供负反馈。声音还通过梯形体内侧核(MNTB)神经元抑制 MOC 神经元。然而,MNTB-MOC 突触表现出短期抑郁,表明在持续刺激期间 MNTB-MOC 抑制减少。此外,由于体内 MNTB 神经元的基线和声音诱发活动率较高,MNTB-MOC 突触可能会被紧张地抑制。为了探究这一点,我们在小鼠脑片中描述了 MNTB-MOC 突触的短期可塑性。我们模拟了类似于体内的温度和细胞外钙条件,以及类似于体内的快速突触激活率、持续激活和先前的紧张活动的活动模式。突触抑制对细胞外钙浓度和温度敏感。在快速 MNTB 轴突刺激期间,MOC 神经元中的突触后电流叠加,但同时伴有抑制,导致较小的持续电流,表明在快速电路活动期间,MOC 神经元受到紧张抑制。低水平的基线 MNTB 活动不会显著降低对随后模拟声音刺激的快速活动的反应,表明在体内,尽管存在紧张性突触抑制,但 MNTB 对 MOC 神经元的抑制仍然存在。关键点:来自梯形体内侧核(MNTB)的抑制性突触到内侧橄榄耳蜗(MOC)神经元表现出对钙和温度敏感的短期可塑性,在较高的钙浓度和室温下,突触抑制增强。模拟自发 MNTB 活动上限的背景突触活动的高频率会导致 MNTB-MOC 突触的紧张性突触抑制,从而限制进一步的突触抑制。MNTB-MOC 突触的高活动率会导致突触叠加,同时伴有抑制,从而产生初始幅度较大的反应,然后衰减到紧张性抑制。