Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina, and.
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina.
J Neurosci. 2018 Aug 22;38(34):7440-7451. doi: 10.1523/JNEUROSCI.0363-18.2018. Epub 2018 Jul 20.
Cochlear synaptopathy produced by exposure to noise levels that cause only transient auditory threshold elevations is a condition that affects many people and is believed to contribute to poor speech discrimination in noisy environments. These functional deficits in hearing, without changes in sensitivity, have been called hidden hearing loss (HHL). It has been proposed that activity of the medial olivocochlear (MOC) system can ameliorate acoustic trauma effects. Here we explore the role of the MOC system in HHL by comparing the performance of two different mouse models: an α9 nicotinic receptor subunit knock-out (KO; KO), which lacks cholinergic transmission between efferent neurons and hair cells; and a gain-of-function knock-in (KI; ' KI) carrying an α9 point mutation that leads to enhanced cholinergic activity. Animals of either sex were exposed to sound pressure levels that in wild-type produced transient cochlear threshold shifts and a decrease in neural response amplitudes, together with the loss of ribbon synapses, which is indicative of cochlear synaptopathy. Moreover, a reduction in the number of efferent contacts to outer hair cells was observed. In KO ears, noise exposure produced permanent auditory threshold elevations together with cochlear synaptopathy. In contrast, the ' KI was completely resistant to the same acoustic exposure protocol. These results show a positive correlation between the degree of HHL prevention and the level of cholinergic activity. Notably, enhancement of the MOC feedback promoted new afferent synapse formation, suggesting that it can trigger cellular and molecular mechanisms to protect and/or repair the inner ear sensory epithelium. Noise overexposure is a major cause of a variety of perceptual disabilities, including speech-in-noise difficulties, tinnitus, and hyperacusis. Here we show that exposure to noise levels that do not cause permanent threshold elevations or hair cell death can produce a loss of cochlear nerve synapses to inner hair cells as well as degeneration of medial olivocochlear (MOC) terminals contacting the outer hair cells. Enhancement of the MOC reflex can prevent both types of neuropathy, highlighting the potential use of drugs that increase α9α10 nicotinic cholinergic receptor activity as a pharmacotherapeutic strategy to avoid hidden hearing loss.
耳蜗突触病是由仅引起短暂听觉阈值升高的噪声水平引起的,它影响许多人,并被认为导致在嘈杂环境中言语辨别能力差。这些听力功能缺陷,而不改变敏感性,被称为隐匿性听力损失(HHL)。有人提出,内侧橄榄耳蜗(MOC)系统的活动可以改善声创伤的影响。在这里,我们通过比较两种不同的小鼠模型来探讨 MOC 系统在 HHL 中的作用:一种是α9 烟碱型乙酰胆碱受体亚单位敲除(KO;KO),它缺乏传出神经元和毛细胞之间的胆碱能传递;另一种是携带导致胆碱能活性增强的α9 点突变的功能获得性敲入(KI;'KI)。无论性别如何,动物都暴露于声压水平,在野生型中产生短暂的耳蜗阈值移位和神经反应幅度降低,同时伴有带状突触丢失,这表明存在耳蜗突触病。此外,还观察到外毛细胞传出接触的数量减少。在 KO 耳朵中,噪声暴露产生永久性听觉阈值升高和耳蜗突触病。相比之下,'KI 对相同的声暴露方案完全有抵抗力。这些结果表明,HHL 预防的程度与胆碱能活性的水平之间存在正相关。值得注意的是,MOC 反馈的增强促进了新传入突触的形成,这表明它可以触发细胞和分子机制来保护和/或修复内耳感觉上皮。过度暴露于噪声是各种感知障碍的主要原因,包括言语噪声困难、耳鸣和听觉过敏。在这里,我们表明,暴露于不会引起永久性阈值升高或毛细胞死亡的噪声水平会导致内毛细胞的耳蜗神经突触丧失,以及接触外毛细胞的内侧橄榄耳蜗(MOC)末端变性。MOC 反射的增强可以预防这两种神经病变,突出了增加α9α10 烟碱型乙酰胆碱受体活性的药物作为避免隐匿性听力损失的药物治疗策略的潜力。