Suppr超能文献

基于睡眠呼吸暂停打鼾和荟萃分析的实时心力衰竭医疗通气分析。

A Real-Time Medical Ventilation on Heart Failure Analysis Based on Sleep Apnea Snore and Meta-Analysis.

机构信息

Department of Cardiology, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 10002 Beijing, China.

Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100176 Beijing, China.

出版信息

J Healthc Eng. 2022 Apr 11;2022:9979413. doi: 10.1155/2022/9979413. eCollection 2022.

Abstract

An issue with cardiac ventilation can result in death at any moment throughout a person's life. The apnea-hypopnea index (AHI) has historically been influenced by medical ventilation on heart failure; nevertheless, the sleep snore analysis is the best model to diagnose. The problems with ventilation are caused by problems with air pressure and blood circulation in the heart valves, where the pathological measures are continually detecting ventilation issues. Understanding the pathophysiology of OSA will have a direct impact on clinical treatment choices as well as the design of clinical studies. Treatments could be tailored to each patient's unique needs based on the fundamental reason to their OSA. Through the OSA treatment, patients could feel better, and understanding OSA symptoms and also outcomes will improve patient's health; as a result, the study reveals that most of the population are likely to benefit from specific OSA treatment approaches. For achieving the benefits of OSA treatment the classification accuracy is needed to be improved. So, in this research work, an LeNet-100 CNN-based deep learning technology is used to get information and apply the classification approaches. We obtained the heart failure dataset from the Kaggle website for conducting a meta-analysis. An accuracy of 93.25%, sensitivity of 97.29%, recall of 96.34%, and F measure of 95.34% had been attained. This approach outperforms the technology and is comparable to the present heart failure meta-analysis..

摘要

心脏通气问题可能导致一个人在任何时候死亡。呼吸暂停低通气指数(AHI)历史上受到心力衰竭医疗通气的影响;然而,睡眠打鼾分析是诊断的最佳模型。通气问题是由心脏瓣膜中的气压和血液循环问题引起的,病理措施不断检测通气问题。了解阻塞性睡眠呼吸暂停的病理生理学将直接影响临床治疗选择以及临床研究的设计。可以根据 OSA 的根本原因为每个患者的独特需求定制治疗方法。通过 OSA 治疗,患者可以感觉更好,了解 OSA 症状和结果也将改善患者的健康;因此,研究表明,大多数人可能受益于特定的 OSA 治疗方法。为了实现 OSA 治疗的益处,需要提高分类准确性。因此,在这项研究工作中,我们使用基于 LeNet-100 CNN 的深度学习技术来获取信息并应用分类方法。我们从 Kaggle 网站获取心力衰竭数据集进行荟萃分析。该方法获得了 93.25%的准确率、97.29%的敏感度、96.34%的召回率和 95.34%的 F 度量。该方法优于现有技术,与现有的心力衰竭荟萃分析相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6715/9015873/e022fc535e2a/JHE2022-9979413.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验