School of Geography, Nanjing Normal University, Nanjing, China.
Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
Glob Chang Biol. 2022 Jul;28(14):4472-4488. doi: 10.1111/gcb.16202. Epub 2022 May 2.
Microbial nitrogen (N) immobilization, which typically results in soil N retention but based on the balance of gross N immobilization over gross N production, affects the fate of the anthropogenic reactive N. However, global patterns and drivers of soil gross immobilization of ammonium (I ) and nitrate (I ) are still only tentatively known. Here, we provide a comprehensive analysis considering gross N production rates, soil properties, and climate and their interactions for a deeper understanding of the patterns and drivers of I and I . By compiling and analyzing 1966 observations from 274 N-labelled studies, we found a global average of I and I of 7.41 ± 0.72 and 2.03 ± 0.30 mg N kg day with a ratio of I to I (I :I ) of 0.79 ± 0.11. Soil I and I increased with increasing soil gross N mineralization (GNM) and nitrification (GN), microbial biomass, organic carbon, and total N and decreasing soil bulk density. Our analysis revealed that GNM and GN were the main stimulators for I and I , respectively. The structural equation modeling showed that higher soil microbial biomass, total N, pH, and precipitation stimulate I and I through enhancing GNM and GN. However, higher temperature and soil bulk density suppress I and I by reducing microbial biomass and total N. Soil I varied with terrestrial ecosystems, being greater in grasslands and forests, which have higher rates of GNM, than in croplands. The highest I :I was observed in croplands, which had higher rates of GN. The global average of GN to I was 2.86 ± 0.31, manifesting a high potential risk of N loss. We highlight that anthropogenic activities that influence soil properties and gross N production rates likely interact with future climate changes and land uses to affect soil N immobilization and, eventually, the fate of the anthropogenic reactive N.
微生物氮(N)固定通常会导致土壤 N 保留,但基于总 N 固定与总 N 生产的平衡,会影响人为活性 N 的命运。然而,土壤铵(I)和硝酸盐(I)总固定的全球模式和驱动因素仍只是初步了解。在这里,我们通过综合考虑总 N 生产速率、土壤特性、气候及其相互作用,对 I 和 I 的模式和驱动因素进行了更深入的分析。通过编译和分析 274 项 N 标记研究中的 1966 个观测结果,我们发现全球平均 I 和 I 分别为 7.41±0.72 和 2.03±0.30 mg N kg 天 ,I 与 I 的比值(I :I )为 0.79±0.11。土壤 I 和 I 随着土壤总 N 矿化(GNM)和硝化(GN)、微生物生物量、有机碳和总 N 的增加以及土壤容重的降低而增加。我们的分析表明,GNM 和 GN 分别是 I 和 I 的主要刺激因素。结构方程模型表明,较高的土壤微生物生物量、总 N、pH 值和降水通过增强 GNM 和 GN 来刺激 I 和 I 。然而,较高的温度和土壤容重通过降低微生物生物量和总 N 来抑制 I 和 I 。土壤 I 随陆地生态系统而变化,在草地和森林中较大,其 GNM 速率较高,而在农田中较小。在农田中观察到最高的 I :I ,其 GN 速率较高。全球平均的 GN 到 I 为 2.86±0.31,表明 N 损失的潜在风险很高。我们强调,影响土壤特性和总 N 生产速率的人为活动可能与未来气候变化和土地利用相互作用,影响土壤 N 固定,最终影响人为活性 N 的命运。