Suppr超能文献

全球陆地生态系统中铵和硝酸盐的土壤总固持格局。

Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems.

机构信息

School of Geography, Nanjing Normal University, Nanjing, China.

Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.

出版信息

Glob Chang Biol. 2022 Jul;28(14):4472-4488. doi: 10.1111/gcb.16202. Epub 2022 May 2.

Abstract

Microbial nitrogen (N) immobilization, which typically results in soil N retention but based on the balance of gross N immobilization over gross N production, affects the fate of the anthropogenic reactive N. However, global patterns and drivers of soil gross immobilization of ammonium (I ) and nitrate (I ) are still only tentatively known. Here, we provide a comprehensive analysis considering gross N production rates, soil properties, and climate and their interactions for a deeper understanding of the patterns and drivers of I and I . By compiling and analyzing 1966 observations from 274 N-labelled studies, we found a global average of I and I of 7.41 ± 0.72 and 2.03 ± 0.30 mg N kg  day with a ratio of I to I (I :I ) of 0.79 ± 0.11. Soil I and I increased with increasing soil gross N mineralization (GNM) and nitrification (GN), microbial biomass, organic carbon, and total N and decreasing soil bulk density. Our analysis revealed that GNM and GN were the main stimulators for I and I , respectively. The structural equation modeling showed that higher soil microbial biomass, total N, pH, and precipitation stimulate I and I through enhancing GNM and GN. However, higher temperature and soil bulk density suppress I and I by reducing microbial biomass and total N. Soil I varied with terrestrial ecosystems, being greater in grasslands and forests, which have higher rates of GNM, than in croplands. The highest I :I was observed in croplands, which had higher rates of GN. The global average of GN to I was 2.86 ± 0.31, manifesting a high potential risk of N loss. We highlight that anthropogenic activities that influence soil properties and gross N production rates likely interact with future climate changes and land uses to affect soil N immobilization and, eventually, the fate of the anthropogenic reactive N.

摘要

微生物氮(N)固定通常会导致土壤 N 保留,但基于总 N 固定与总 N 生产的平衡,会影响人为活性 N 的命运。然而,土壤铵(I)和硝酸盐(I)总固定的全球模式和驱动因素仍只是初步了解。在这里,我们通过综合考虑总 N 生产速率、土壤特性、气候及其相互作用,对 I 和 I 的模式和驱动因素进行了更深入的分析。通过编译和分析 274 项 N 标记研究中的 1966 个观测结果,我们发现全球平均 I 和 I 分别为 7.41±0.72 和 2.03±0.30 mg N kg 天 ,I 与 I 的比值(I :I )为 0.79±0.11。土壤 I 和 I 随着土壤总 N 矿化(GNM)和硝化(GN)、微生物生物量、有机碳和总 N 的增加以及土壤容重的降低而增加。我们的分析表明,GNM 和 GN 分别是 I 和 I 的主要刺激因素。结构方程模型表明,较高的土壤微生物生物量、总 N、pH 值和降水通过增强 GNM 和 GN 来刺激 I 和 I 。然而,较高的温度和土壤容重通过降低微生物生物量和总 N 来抑制 I 和 I 。土壤 I 随陆地生态系统而变化,在草地和森林中较大,其 GNM 速率较高,而在农田中较小。在农田中观察到最高的 I :I ,其 GN 速率较高。全球平均的 GN 到 I 为 2.86±0.31,表明 N 损失的潜在风险很高。我们强调,影响土壤特性和总 N 生产速率的人为活动可能与未来气候变化和土地利用相互作用,影响土壤 N 固定,最终影响人为活性 N 的命运。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验