Department of Earth and Environmental Sciences, University of Minnesota Duluth, Duluth, MN 55812.
Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN 55812.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2120015119. doi: 10.1073/pnas.2120015119. Epub 2022 Apr 18.
Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined “Little Ice Age” (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.
人为辐射强迫对热带辐合带(ITCZ)中对流降雨位置和强度的影响存在不确定性,这限制了我们预测未来温暖世界热带水文气候变化的能力。古气候和模式数据为 ITCZ 变化的时间尺度和机制提供了信息;然而,全面的长期观点仍然难以捉摸。在这里,我们使用 48 个古记录的综合数据,考虑到古档案年龄模型的不确定性,量化了前工业化过去千年(公元 850 年至 1850 年)新热带水文气候的演变。我们表明,在多世纪的时间尺度上,由于自然辐射强迫的变化,出现了降水在半球间反相的模式。传统定义的“小冰期”(公元 1450 年至 1850 年)的特点是,在南半球明显向湿润条件转变,而在北半球则是不太明显和时空复杂的向干燥条件转变。这种水文气候变化模式与气候模式模拟的结果一致,表明北半球的相对冷却导致了大西洋盆地热赤道向南移动,以及热带美洲 ITCZ 的南移,火山强迫是主要驱动因素。这些发现与基于代理的西太平洋盆地区域 ITCZ 行为重建结果不一致,在过去的一千年中,似乎是 ITCZ 的宽度和强度变化,而不是平均位置,导致了水文气候的转变。这再次表明,ITCZ 对外部强迫的反应是特定于区域的,这使得预测热带降水对全球变暖的响应变得复杂。