Suppr超能文献

通过将硫原子替代掺杂到原子级薄的Bi₂WO₆中实现原子级电荷调制以促进光催化CO还原

Charge Modulation at Atomic-Level through Substitutional Sulfur Doping into Atomically Thin Bi WO toward Promoting Photocatalytic CO Reduction.

作者信息

Teh Yee Wen, Er Chen-Chen, Kong Xin Ying, Ng Boon-Junn, Yong Siek-Ting, Chai Siang-Piao

机构信息

Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia.

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

出版信息

ChemSusChem. 2022 Jul 21;15(14):e202200471. doi: 10.1002/cssc.202200471. Epub 2022 May 23.

Abstract

Photocatalytic reduction of CO has attracted enormous interest as a sustainable and renewable source of energy. In the past decade, numerous bulk-type semiconductors have been developed, but the existing designs suffer many limitations, namely rapid recombination of charge carriers and weak light absorption ability. Herein, a bottom-up approach was developed to design atomically thin sulfur-doped Bi WO perovskite nanosheets (S-BWO) with improved reduction ability, extended visible light absorption, prolonged lifetime of charge carriers, enhanced adsorption of CO , and reduced work function. Compared with pristine Bi WO (P-BWO), S-BWO nanosheets exhibited a 3-fold improvement in photocatalytic reduction of CO under simulated sunlight irradiation. Experimental studies and density functional theory calculations revealed the synergistic roles of atomically thin nanosheets and S atoms in promoting photocatalytic efficiency.

摘要

光催化还原一氧化碳作为一种可持续的可再生能源已引起了极大的关注。在过去十年中,人们开发了许多体相半导体,但现有设计存在许多局限性,即电荷载流子快速复合和光吸收能力较弱。在此,我们开发了一种自下而上的方法来设计具有改进还原能力、扩展可见光吸收、延长电荷载流子寿命、增强一氧化碳吸附和降低功函数的原子级薄的硫掺杂铋钨钙钛矿纳米片(S-BWO)。与原始的铋钨(P-BWO)相比,S-BWO纳米片在模拟太阳光照射下对一氧化碳的光催化还原表现出3倍的提升。实验研究和密度泛函理论计算揭示了原子级薄纳米片和硫原子在提高光催化效率方面的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d941/9400888/561e49d93fc0/CSSC-15-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验