Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA.
Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Respir Physiol Neurobiol. 2022 Aug;302:103912. doi: 10.1016/j.resp.2022.103912. Epub 2022 Apr 18.
We determined whether intravenous injections of the membrane-permeable ventilatory stimulants, D-cysteine ethyl ester (ethyl (2 S)- 2-amino-3-sulfanylpropanoate) (D-CYSee) and D-cystine dimethyl ester (methyl (2 S)- 2-amino-3-[[(2 S)- 2-amino-3-methoxy-3-oxopropyl]disulfanyl] propanoate) (D-CYSdime), could overcome the deleterious actions of intravenous morphine on arterial blood pH, pCO, pO and sO, and Alveolar-arterial (A-a) gradient (i.e., the measure of exchange of gases in the lungs) in Sprague Dawley rats anesthetized with isoflurane. Injection of morphine (2 mg/kg, IV) caused pronounced reductions in pH, pO and sO accompanied by elevations in pCO all which are suggestive of diminished ventilation, and elevations in A-a gradient, which suggests a mismatch of ventilation-perfusion. Subsequent boluses of D-cysteine ethyl ester (2 ×100 μmol/kg, IV) or D-cystine dimethyl ester (2 ×50 μmol/kg, IV) rapidly reversed of the negative actions of morphine on pH, pCO, pO and sO and A-a gradient. Similar injections of D-cysteine (2 ×100 μmol/kg, IV) were without effect, whereas injections of D-cystine (2 ×50 μmol/kg, IV) produced a modest reversal. Our data show that D-cysteine ethyl ester and D-cystine dimethyl ester readily overcome the deleterious effects of morphine on arterial blood gas (ABG) chemistry and A-a gradient by mechanisms that may depend upon their ability to rapidly enter cells. As a result of their known ability to enter the brain, lungs, muscles of the chest wall, and most likely the major peripheral chemoreceptors (i.e., carotid bodies), the effects of the thiolesters on changes in ABG chemistry and A-a gradient elicited by morphine likely involve central and peripheral mechanisms. We are employing target prediction methods to identify an array of in vitro and in vivo methods to test potential functional proteins by which D-CYSee and D-CYSdime modulate the effects of morphine on breathing.
我们确定了是否可以通过静脉注射膜通透性通气刺激物 D-半胱氨酸乙酯(乙基(2S)-2-氨基-3-巯基丙酸酯)(D-CYSee)和 D-胱氨酸二甲酯(甲基(2S)-2-氨基-3-[[(2S)-2-氨基-3-甲氧基-3-氧代丙基]二硫基]丙酯)(D-CYSdime),来克服静脉注射吗啡对动脉血 pH 值、pCO、pO 和 sO 以及肺泡-动脉(A-a)梯度(即肺部气体交换的衡量标准)的有害作用,在异氟烷麻醉的 Sprague Dawley 大鼠中。注射吗啡(2mg/kg,IV)导致 pH 值、pO 和 sO 明显降低,同时 pCO 升高,这表明通气减少,以及 A-a 梯度升高,表明通气-灌注不匹配。随后静脉注射 D-半胱氨酸乙酯(2×100μmol/kg,IV)或 D-胱氨酸二甲酯(2×50μmol/kg,IV)迅速逆转了吗啡对 pH 值、pCO、pO 和 sO 和 A-a 梯度的负面影响。类似剂量的 D-半胱氨酸(2×100μmol/kg,IV)没有效果,而 D-胱氨酸(2×50μmol/kg,IV)则产生了适度的逆转。我们的数据表明,D-半胱氨酸乙酯和 D-胱氨酸二甲酯通过可能依赖于其快速进入细胞的能力的机制,很容易克服吗啡对动脉血气(ABG)化学和 A-a 梯度的有害影响。由于它们已知能够进入大脑、肺部、胸壁肌肉以及很可能主要的外周化学感受器(即颈动脉体),这些硫酯对吗啡引起的 ABG 化学和 A-a 梯度变化的影响可能涉及中枢和外周机制。我们正在采用靶标预测方法来鉴定一系列体外和体内方法,以测试潜在的功能蛋白,通过这些蛋白 D-CYSee 和 D-CYSdime 调节吗啡对呼吸的作用。