Suppr超能文献

基于步态和姿势不稳的帕金森病与非典型帕金森病的鉴别诊断:使用增强权重投票集成模型的人工智能。

Differential diagnosis between Parkinson's disease and atypical parkinsonism based on gait and postural instability: Artificial intelligence using an enhanced weight voting ensemble model.

机构信息

Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.

Medical AI Research Center, Samsung Medical Center, Seoul, Republic of Korea.

出版信息

Parkinsonism Relat Disord. 2022 May;98:32-37. doi: 10.1016/j.parkreldis.2022.04.003. Epub 2022 Apr 13.

Abstract

BACKGROUND

Parkinsonian diseases and cerebellar ataxia among movement disorders, are representative diseases which present with distinct pathological gaits. We proposed a machine learning system that can differentiate Parkinson's disease (PD), cerebellar ataxia and progressive supranuclear palsy Richardson syndrome (PSP-RS) based on postural instability and gait analysis.

METHODS

We screened 1467 gait (GAITRite) and postural instability (Pedoscan) analyses performed in Samsung Medical Center from January 2019 to December 2020. PD, probable PSP-RS, and cerebellar ataxia (i.e., probable MSA-C, hereditary ataxia, and sporadic adult-onset ataxia) were included in the study. The gated recurrent units for GaitRite and the deep neural network for Pedoscan were applied. The enhanced weight voting ensemble (EWVE) method was applied to incorporate the two modalities.

RESULTS

We included 551 PD, 38 PSP-RS, 113 cerebellar ataxia and among them, 71 were MSA-C. Pedoscan-based and Gait-based model showed high sensitivity but low specificity in differentiating atypical parkinsonism from PD. The EWVE showed significantly improved specificity and reliable performance in differentiation between PD vs. ataxia patients (AUC 0.974 ± 0.036, sensitivity 0.829 ± 0.217, specificity 0.969 ± 0.038), PD vs. MSA-C (AUC 0.975 ± 0.020, sensitivity 0.823 ± 0.162, specificity 0.932 ± 0.030) and PD vs. PSP-RS (AUC 0.963 ± 0.028, sensitivity 0.555 ± 0.157, specificity 0.936 ± 0.031).

CONCLUSION

We proposed reliable Pedoscan-based, Gait-based and EWVE model in differentiating gait disorders by integrating information from gait and postural instability. This model can provide diagnosis guidelines to primary caregivers and assist in differential diagnosis of PD from atypical parkinsonism for neurologists.

摘要

背景

运动障碍中的帕金森病和小脑性共济失调是表现出明显病理步态的代表性疾病。我们提出了一种基于姿势不稳和步态分析的机器学习系统,可以区分帕金森病(PD)、小脑共济失调和进行性核上性麻痹 Richardson 综合征(PSP-RS)。

方法

我们筛选了 2019 年 1 月至 2020 年 12 月在三星医疗中心进行的 1467 项步态(GAITRite)和姿势不稳(Pedoscan)分析。研究纳入 PD、可能的 PSP-RS 和小脑共济失调(即可能的 MSA-C、遗传性共济失调和散发性成人发病的共济失调)。应用门控递归单元进行 GAITRite 和深度神经网络进行 Pedoscan。应用增强权重投票集成(EWVE)方法整合两种模式。

结果

我们纳入了 551 例 PD、38 例 PSP-RS、113 例小脑共济失调,其中 71 例为 MSA-C。基于 Pedoscan 和基于步态的模型在区分非典型帕金森病与 PD 方面具有较高的敏感性,但特异性较低。EWVE 在区分 PD 与共济失调患者(AUC 0.974±0.036,敏感性 0.829±0.217,特异性 0.969±0.038)、PD 与 MSA-C(AUC 0.975±0.020,敏感性 0.823±0.162,特异性 0.932±0.030)和 PD 与 PSP-RS(AUC 0.963±0.028,敏感性 0.555±0.157,特异性 0.936±0.031)方面表现出显著提高的特异性和可靠性能。

结论

我们提出了一种可靠的基于 Pedoscan、基于步态和 EWVE 的模型,通过整合步态和姿势不稳信息来区分步态障碍。该模型可为初级护理人员提供诊断指南,并协助神经科医生对 PD 与非典型帕金森病进行鉴别诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验