Suppr超能文献

Adrenergic modulation of potassium metabolism during exercise in normal and diabetic humans.

作者信息

Castellino P, Simonson D C, DeFronzo R A

出版信息

Am J Physiol. 1987 Jan;252(1 Pt 1):E68-76. doi: 10.1152/ajpendo.1987.252.1.E68.

Abstract

The effect of acute and chronic beta- and alpha-adrenergic blockade on potassium homeostasis during moderate intensity exercise (40% VO2max) was investigated in control and insulin-dependent diabetic subjects. In protocol I, subjects were studied during exercise alone, exercise plus intravenous propranolol, and exercise plus intravenous phentolamine. In both the control and diabetic groups, exercise alone produced a modest increase in the plasma potassium concentration (0.31 +/- 0.06 meq/l), while propranolol exacerbated this hyperkalemic response. In contrast, the increment in plasma potassium during phentolamine was similar to exercise alone in normals but was 26% (P less than 0.05) lower in the diabetic group. In protocol II, the effect of chronic (5 days) beta-adrenergic blockade on potassium homeostasis was examined. Subjects participated in three studies: exercise alone, exercise plus propranolol (beta 1/beta 2-antagonist), and exercise plus metoprolol (beta 1 antagonist). In the nondiabetic group, both propranolol and metoprolol were associated with a 40% greater increase in potassium compared with exercise alone. In the diabetic group, propranolol, but not metoprolol, was associated with a deterioration in potassium tolerance. In no study could the alterations in potassium homeostasis be explained by a change in urinary potassium excretion. In summary, alpha-adrenergic blockade ameliorates exercise-induced hyperkalemia in diabetic but not in control subjects, nonspecific beta-adrenergic blockade causes a greater increment in potassium when compared with exercise alone, and specific beta 1-adrenergic blockade exacerbates exercise-induced hyperkalemia in control, but not in diabetic subjects. These results indicate that both alpha- and beta-adrenergic regulation of extrarenal potassium metabolism is altered in insulin-dependent diabetes mellitus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验