Suppr超能文献

基于聚类算法的企业财务风险识别。

Identification of Enterprise Financial Risk Based on Clustering Algorithm.

机构信息

School of Economics and Management, Xi'an University of Technology, Xi'an 710054, China.

出版信息

Comput Intell Neurosci. 2022 Apr 12;2022:1086945. doi: 10.1155/2022/1086945. eCollection 2022.

Abstract

In order to solve the problem that corporate financial risks seriously affect the healthy development of enterprises, credit institutions, securities investors, and even the whole of China, the K-means clustering algorithm, the risk screening process, and the Gaussian mixture clustering algorithm, the risk screening process, are proposed; experiments have shown that although the number of high-risk companies selected by the K-means algorithm is small, only 9% of the full sample, the high-risk cluster can contain nearly 30% of the new "special treatment" companies. If the time period is extended to the next 5 years, this proportion will be higher. Finally we found that if the prediction of "special handling" events is used as the criterion for evaluating high-risk clusters, then K-means clustering can effectively screen out those risky companies that need to be treated with caution by investors. The validity of the experiment is verified.

摘要

为了解决企业财务风险严重影响企业健康发展、信用机构、证券投资者,甚至整个中国的问题,提出了 K 均值聚类算法、风险筛选过程和高斯混合聚类算法、风险筛选过程;实验表明,尽管 K 均值算法选择的高风险公司数量很少,仅占全样本的 9%,但高风险聚类可以包含近 30%的新“特别处理”公司。如果延长时间期限为接下来的 5 年,这个比例将会更高。最后我们发现,如果使用“特别处理”事件的预测作为评估高风险聚类的标准,那么 K 均值聚类可以有效地筛选出那些需要投资者谨慎对待的风险公司。实验的有效性得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c16f/9018203/e1f43718934d/CIN2022-1086945.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验