Shi Ji, Huang Wenyu, Zhu Hongxiang, Xiong Jianhua, Bei Huiting, Wang Shuangfei
Department of Light Industry and Food Engineering, Guangxi University, No. 100 Daxue rd, Nanning, Guangxi 530000, China.
School of Resources, Environment and Materirals, Guangxi University, No. 100 Daxue rd, Nanning, Guangxi 530000, China.
ACS Omega. 2022 Mar 28;7(14):12158-12170. doi: 10.1021/acsomega.2c00523. eCollection 2022 Apr 12.
Widespread application of TiO for degradation of antibiotics is restricted by mainly the low photodegradation efficiency under solar irradiation. To expand the application of TiO, the key factors that should be improved are visible-light response, yield of electrons and holes, and durability. Herein, we report a visible-light responsive and durable sugarcane-bagasse-derived biochar supported hydrogenated TiO (HSCB/H-TiO) photocatalyst with higher electron production fabricated by a facile one-pot hydrogenation. Mild hydrogenation temperature preserved the lotus-stem-like structure of sugarcane bagasse and gave the photocatalyst great separability. The superior durability of HSCB/H-TiO was demonstrated by 12 rounds of repeated degradation of methylene blue (MB). In addition, the electron paramagnetic resonance (EPR) results demonstrated that the biochar skeleton contains abundant persistent free radicals (PFRs), which can provide excess electrons to form more O . Meanwhile, radical quenching experiment and EPR radical trapping results also revealed that O was the most dominant species for enrofloxacin (ENR) degradation. Thus, the as-fabricated photocatalyst shows excellent solar-driven degradation of ENR, and 95.6% of ENR was degraded in 180 min under simulated solar irradiation. Possible ENR degradation pathways and mechanism are also proposed based on the identified intermediates.
TiO用于抗生素降解的广泛应用主要受到其在太阳辐射下光降解效率低的限制。为了扩大TiO的应用,需要改进的关键因素包括可见光响应、电子和空穴产率以及耐久性。在此,我们报道了一种通过简便的一锅加氢法制备的具有更高电子产量的可见光响应且耐用的甘蔗渣衍生生物炭负载氢化TiO(HSCB/H-TiO)光催化剂。温和的加氢温度保留了甘蔗渣的莲茎状结构,并赋予光催化剂良好的可分离性。通过12轮重复降解亚甲基蓝(MB)证明了HSCB/H-TiO具有优异的耐久性。此外,电子顺磁共振(EPR)结果表明,生物炭骨架含有丰富的持久性自由基(PFRs),其可以提供过量电子以形成更多的O 。同时,自由基猝灭实验和EPR自由基捕获结果还表明,O 是恩诺沙星(ENR)降解的最主要物种。因此,所制备的光催化剂在模拟太阳辐射下对ENR表现出优异的太阳能驱动降解性能,在180分钟内95.6%的ENR被降解。基于鉴定出的中间体,还提出了可能的ENR降解途径和机理。