Suppr超能文献

移动医疗技术在心房颤动中的应用。

Mobile health technology in atrial fibrillation.

机构信息

Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK.

Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico Di Modena, Modena, Italy.

出版信息

Expert Rev Med Devices. 2022 Apr;19(4):327-340. doi: 10.1080/17434440.2022.2070005. Epub 2022 Apr 25.

Abstract

INTRODUCTION

Mobile health (mHealth) solutions in atrial fibrillation (AF) are becoming widespread, thanks to everyday life devices, such as smartphones. Their use is validated both in monitoring and in screening scenarios. In the published literature, the diagnostic accuracy of mHealth solutions wide differs, and their current clinical use is not well established in principal guidelines.

AREAS COVERED

mHealth solutions have progressively built an AF-detection chain to guide patients from the device's alert signal to the health-care practitioners' (HCPs) attention. This review aims to critically evaluate the latest evidence regarding mHealth devices and the future possible patient's uses in everyday life.

EXPERT OPINION

The patients are the first to be informed of the rhythm anomaly, leading to the urgency of increasing the patients' AF self-management. Furthermore, HCPs need to update themselves about mHealth devices use in clinical practice. Nevertheless, these are promising instruments in specific populations, such as post-stroke patients, to promote an early arrhythmia diagnosis in the post-ablation/cardioversion period, allowing checks on the efficacy of the treatment or intervention.

摘要

简介

移动医疗(mHealth)解决方案在心房颤动(AF)中的应用越来越广泛,这要归功于智能手机等日常生活设备。它们在监测和筛查场景中的应用都得到了验证。在已发表的文献中,mHealth 解决方案的诊断准确性差异很大,其在主要指南中的临床应用目前尚未得到很好的确立。

涵盖领域

mHealth 解决方案已经逐步建立了一个 AF 检测链,以指导患者从设备的警报信号到医疗保健提供者(HCPs)的关注。本综述旨在批判性地评估最新的关于 mHealth 设备的证据,以及未来在日常生活中患者可能的用途。

专家意见

患者是最先发现节律异常的人,这就需要增加患者对 AF 的自我管理的紧迫性。此外,HCPs 需要更新自己关于 mHealth 设备在临床实践中的使用。然而,这些在特定人群中是很有前途的工具,例如中风后患者,以促进消融/电复律后早期心律失常的诊断,从而检查治疗或干预的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验