Suppr超能文献

当前争议:零假设显著性检验。

Current controversies: Null hypothesis significance testing.

机构信息

Institute for Medical and Biomedical Education, St George's, University of London, London, UK.

Department of Obstetrics and Gynecology, Gødstrup Hospital, Gødstrup, Denmark.

出版信息

Acta Obstet Gynecol Scand. 2022 Jun;101(6):624-627. doi: 10.1111/aogs.14366. Epub 2022 Apr 22.

Abstract

Traditional null hypothesis significance testing (NHST) incorporating the critical level of significance of 0.05 has become the cornerstone of decision-making in health care, and nowhere less so than in obstetric and gynecological research. However, such practice is controversial. In particular, it was never intended for clinical significance to be inferred from statistical significance. The inference of clinical importance based on statistical significance (p < 0.05), and lack of clinical significance otherwise (p ≥ 0.05) represents misunderstanding of the original purpose of NHST. Furthermore, the limitations of NHST-sensitivity to sample size, plus type I and II errors-are frequently ignored. Therefore, decision-making based on NHST has the potential for recurrent false claims about the effectiveness of interventions or importance of exposure to risk factors, or dismissal of important ones. This commentary presents the history behind NHST along with the limitations that modern-day NHST presents, and suggests that a statistics reform regarding NHST be considered.

摘要

传统的零假设显著性检验(NHST)纳入了 0.05 的关键显著性水平,已成为医疗保健决策的基石,尤其是在妇产科研究中更是如此。然而,这种做法存在争议。特别是,从统计学意义推断临床意义从未被认为是合适的。基于统计学显著性(p < 0.05)推断临床重要性,而在其他情况下(p ≥ 0.05)则不具有临床重要性,这代表了对 NHST 原始目的的误解。此外,NHST 对样本量、I 型和 II 型错误的敏感性的局限性经常被忽视。因此,基于 NHST 的决策有可能反复声称干预措施的有效性或暴露于危险因素的重要性,或者忽视重要的因素。本评论介绍了 NHST 的历史背景以及现代 NHST 所呈现的局限性,并建议考虑对 NHST 进行统计学改革。

相似文献

1
Current controversies: Null hypothesis significance testing.当前争议:零假设显著性检验。
Acta Obstet Gynecol Scand. 2022 Jun;101(6):624-627. doi: 10.1111/aogs.14366. Epub 2022 Apr 22.
9
Thou Shalt Not Bear False Witness Against Null Hypothesis Significance Testing.你不可对零假设显著性检验作伪证。
Educ Psychol Meas. 2017 Aug;77(4):631-662. doi: 10.1177/0013164416668232. Epub 2016 Oct 5.
10
Bayesian inference of population prevalence.贝叶斯推断种群流行率。
Elife. 2021 Oct 6;10:e62461. doi: 10.7554/eLife.62461.

引用本文的文献

7
Some clarifications regarding statistical inference.关于统计推断的一些说明。
Acta Obstet Gynecol Scand. 2022 Nov;101(11):1337-1338. doi: 10.1111/aogs.14414. Epub 2022 Sep 15.
9
Paracetamol preceding very preterm birth: Is it safe?早产儿分娩前使用对乙酰氨基酚:安全吗?
Acta Obstet Gynecol Scand. 2022 Aug;101(8):901-909. doi: 10.1111/aogs.14405. Epub 2022 Jun 15.

本文引用的文献

4
Scientists rise up against statistical significance.科学家们奋起反对统计显著性。
Nature. 2019 Mar;567(7748):305-307. doi: 10.1038/d41586-019-00857-9.
5
Thou Shalt Not Bear False Witness Against Null Hypothesis Significance Testing.你不可对零假设显著性检验作伪证。
Educ Psychol Meas. 2017 Aug;77(4):631-662. doi: 10.1177/0013164416668232. Epub 2016 Oct 5.
6
What the values really tell us.这些数值真正告诉我们的是什么。
Korean J Pain. 2017 Oct;30(4):241-242. doi: 10.3344/kjp.2017.30.4.241. Epub 2017 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验