UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Department of Radiologic Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Neurotherapeutics. 2022 Oct;19(6):1855-1868. doi: 10.1007/s13311-022-01241-8. Epub 2022 Apr 22.
There is an urgent need for drug development in brain tumors. While current radiographic response assessment provides instructions for identifying large treatment effects in simple high- and low-grade gliomas, there remains a void of strategies to evaluate complex or difficult to measure tumors or tumors of mixed grade with enhancing and non-enhancing components. Furthermore, most patients exhibit some period of alteration in tumor growth after starting a new therapy, but simple response categorization (e.g., stable disease, progressive disease) fails to provide any meaningful insight into the depth or degree of potential "subclinical" therapeutic response. We propose a creative solution to these issues based on a tiered strategy meant to increase confidence in identifying therapeutic effects even in the most challenging tumor types, while also providing a framework for complex evaluation of combination and sequential treatment schemes. Specifically, we demonstrate the utility of digital "flipbooks" to quickly identify subtle changes in complex tumors. We show how a modified Levin criteria can be used to quantify the degree of visual changes, while establishing estimates of the association between tumor volume and visual inspection. Lastly, we introduce the concept of quantifying therapeutic response using control systems theory. We propose measuring changes in volume (proportional), the area under the volume vs. time curve (integral) and changes in growth rates (derivative) to utilize a "PID" controller model of single or combination therapeutic activity.
脑肿瘤的药物开发迫在眉睫。虽然目前的放射学反应评估为识别简单的高级和低级神经胶质瘤中的大治疗效果提供了指导,但仍缺乏评估复杂或难以测量的肿瘤或具有增强和非增强成分的混合级肿瘤的策略。此外,大多数患者在开始新的治疗后会出现一段时间的肿瘤生长变化,但简单的反应分类(例如,稳定疾病、进展性疾病)无法提供任何有意义的关于潜在“临床前”治疗反应的深度或程度的见解。我们提出了一个基于分层策略的创造性解决方案,旨在增加识别治疗效果的信心,即使在最具挑战性的肿瘤类型中,同时也为组合和序贯治疗方案的复杂评估提供了框架。具体来说,我们展示了数字“翻转书”在快速识别复杂肿瘤中的细微变化方面的实用性。我们展示了如何使用修改后的 Levin 标准来量化视觉变化的程度,同时建立了肿瘤体积与视觉检查之间关联的估计。最后,我们引入了使用控制系统理论量化治疗反应的概念。我们建议使用体积变化(比例)、体积与时间曲线下的面积(积分)和增长率变化(导数)来利用单个或组合治疗活动的“PID”控制器模型来测量治疗反应。