Suppr超能文献

氟辅助低温合成具有可见光光响应的GaN:ZnO相关固溶体

Fluorine-Assisted Low-Temperature Synthesis of GaN:ZnO-Related Solid Solutions with Visible-Light Photoresponse.

作者信息

Miyoshi Akinobu, Yasuda Shuhei, Kanazawa Tomoki, Haruki Rie, Yanagisawa Keiichi, Tang Ya, Mizuochi Ryusuke, Yokoi Toshiyuki, Nozawa Shunsuke, Kimoto Koji, Maeda Kazuhiko

机构信息

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.

出版信息

ACS Appl Mater Interfaces. 2022 May 4;14(17):19756-19765. doi: 10.1021/acsami.2c03435. Epub 2022 Apr 22.

Abstract

Wurtzite-structured GaZn(N,O,F) was successfully synthesized by nitridation of mixtures of a Ga-containing oxide and ZnF. The addition of ZnF lowered the nitridation temperature for the synthesis of GaZn(N,O,F) to 823 K, even when bulk ZnGaO was used as a paired precursor. This lowering of the synthesis temperature was ascribed to the enhancement of nitridation through the addition of fluorine. The low-temperature nitridation achieved by the addition of fluorine suppressed the volatilization of Zn compared with that during the synthesis of a GaN:ZnO solid solution by a conventional high-temperature ammonolysis reaction. The higher concentration of Zn, as well as the higher N concentration in GaZn(N,O,F) achieved through the fluorine-assisted nitridation, led to a redshift of the absorption edge of GaZn(N,O,F) to 560 nm compared with that of GaN:ZnO synthesized by the conventional ammonolysis reaction. The visible-light absorption of GaZn(N,O,F) can be used to drive the photoelectrochemical oxidation of water.

摘要

通过对含镓氧化物和ZnF混合物进行氮化,成功合成了纤锌矿结构的GaZn(N,O,F)。即使使用块状ZnGaO作为配对前驱体,添加ZnF也能将GaZn(N,O,F)的合成氮化温度降低至823K。合成温度的降低归因于通过添加氟增强了氮化作用。与通过传统高温氨解反应合成GaN:ZnO固溶体的过程相比,添加氟实现的低温氮化抑制了Zn的挥发。通过氟辅助氮化在GaZn(N,O,F)中实现的较高Zn浓度以及较高N浓度,导致GaZn(N,O,F)的吸收边与通过传统氨解反应合成的GaN:ZnO相比红移至560nm。GaZn(N,O,F)的可见光吸收可用于驱动水的光电化学氧化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验