Jia Jidong, Fang Yu, Wu Xingzhi, Zhang Xueru, Wang Yuxiao, Yang Junyi, Song Yinglin
Department of Physics, Harbin Institute of Technology, Harbin 150001, China.
Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
J Phys Chem B. 2022 May 5;126(17):3327-3337. doi: 10.1021/acs.jpcb.2c00634. Epub 2022 Apr 22.
Optical limiting (OL) is an important application of nonlinear optics. Summarizing the structure-property relationship of organic materials is an effective means to develop superior optical limiters. In this work, two triphenylamine-based chalcone derivatives and with different peripheral substituent groups were synthesized to study their transient kinetics and nonlinear optical (NLO) absorption performance. The transient absorption spectrum (TAS) of compounds and in solvents of varying polarities visualizes the intramolecular charge transfer (ICT) processes between the local excited state (LES) and the charge transfer state (CTS). Nanosecond Z-scan experiment and hole-electron analysis indicate that all compounds have excellent reverse saturated absorption (RSA) performance at 532 nm and exhibits stronger RSA than due to the stronger ICT performance of caused by the halogen effect. Degenerate pump-probe experiment shows that the ESA of at 532 nm is significantly enhanced by expanding the molecular π-conjugation. Under the premise of consistent linear transmittance (78%), compound shows better OL performance than compound at 532 nm in the nanosecond time domain. The OL thresholds of and are 3.72 and 0.72 J cm, respectively, which are better than those of the most reported OL materials. Our research shows that simple and common chalcone derivatives exhibit amazing NLO performance through a reasonable design.
光学限幅(OL)是非线性光学的一个重要应用。总结有机材料的结构-性能关系是开发优质光学限幅器的有效手段。在本工作中,合成了两种具有不同外围取代基的基于三苯胺的查尔酮衍生物 和 ,以研究它们的瞬态动力学和非线性光学(NLO)吸收性能。化合物 和 在不同极性溶剂中的瞬态吸收光谱(TAS)直观显示了局域激发态(LES)和电荷转移态(CTS)之间的分子内电荷转移(ICT)过程。纳秒Z扫描实验和空穴-电子分析表明,所有化合物在532 nm处均具有优异的反向饱和吸收(RSA)性能,并且由于卤素效应导致 的ICT性能更强, 表现出比 更强的RSA。简并泵浦-探测实验表明,通过扩展分子π共轭, 在532 nm处的受激态吸收(ESA)显著增强。在线性透过率一致(78%)的前提下,化合物 在纳秒时域中于532 nm处表现出比化合物 更好的光学限幅性能。 和 的光学限幅阈值分别为3.72和0.72 J/cm²,优于大多数已报道的光学限幅材料。我们的研究表明,简单常见的查尔酮衍生物通过合理设计展现出惊人的非线性光学性能。