State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
College of Life Science, Wuhan University, Wuhan, China.
J Biol Chem. 2022 Jun;298(6):101961. doi: 10.1016/j.jbc.2022.101961. Epub 2022 Apr 20.
Egg-laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 α under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the hypoxia-inducible factor-mediated hypoxia signaling pathway; however, the posttranslational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of hypoxia-inducible factor-1 α. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity and which may benefit cellular adaptation to conditions of hypoxia.
卵母细胞发育缺陷 9 型 1(EGLN1)作为一种氧传感器,在正常氧条件下催化缺氧诱导因子-1α 的脯氨酰羟化,导致其蛋白酶体降解。因此,EGLN1 在缺氧诱导因子介导的缺氧信号通路中发挥核心作用;然而,控制 EGLN1 功能的翻译后修饰在很大程度上仍然未知。在这里,我们鉴定出一种赖氨酸单甲基转移酶 SET7 催化 EGLN1 赖氨酸 297 的甲基化,导致 EGLN1 抑制缺氧诱导因子-1α 脯氨酰羟化的活性受到抑制。值得注意的是,我们证明 EGLN1 的甲基化模拟突变体失去了抑制缺氧信号通路的能力,导致细胞增殖和耗氧量增加。总的来说,我们的数据确定了 EGLN1 的一种新的修饰,这对抑制其酶活性至关重要,这可能有利于细胞适应缺氧条件。