Suppr超能文献

在单碱基分辨率下探测四链交错富含胞嘧啶的基序的折叠途径。

Probing the folding pathways of four-stranded intercalated cytosine-rich motifs at single base-pair resolution.

机构信息

Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.

Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.

出版信息

Biochimie. 2022 Aug;199:81-91. doi: 10.1016/j.biochi.2022.04.007. Epub 2022 Apr 20.

Abstract

Cytosine-rich DNA can fold into four-stranded intercalated structures called i-motifs (iMs) under acidic conditions through the formation of hemi-protonated C:C base pairs. However, the folding and stability of iMs rely on many other factors that are not yet fully understood. Here, we combined biochemical and biophysical approaches to determine the factors influencing iM stability under a wide range of experimental conditions. By using high-resolution primer extension assays, circular dichroism, and absorption spectroscopies, we demonstrate that the stabilities of three different biologically relevant iMs are not dependent on molecular crowding agents. Instead, some of the crowding agents affected overall DNA synthesis. We also tested a range of small molecules to determine their effect on iM stabilization at physiological temperature and demonstrated that the G-quadruplex-specific molecule CX-5461 is also a promising candidate for selective iM stabilization. This work provides important insights into the requirements needed for different assays to accurately study iM stabilization, which will serve as important tools for understanding the contribution of iMs in cell regulation and their potential as therapeutic targets.

摘要

富含胞嘧啶的 DNA 可以在酸性条件下通过形成半质子化的 C:C 碱基对折叠成称为 i 型发夹(iMs)的四链插入结构。然而,iMs 的折叠和稳定性依赖于许多其他尚未完全理解的因素。在这里,我们结合生化和生物物理方法来确定在广泛的实验条件下影响 iM 稳定性的因素。通过使用高分辨率引物延伸测定法、圆二色性和吸收光谱法,我们证明三种不同的生物学相关 iMs 的稳定性不依赖于分子拥挤剂。相反,一些拥挤剂会影响整体 DNA 合成。我们还测试了一系列小分子以确定它们在生理温度下对 iM 稳定化的影响,并证明 G-四链体特异性分子 CX-5461 也是选择性 iM 稳定化的有前途的候选物。这项工作为不同测定法准确研究 iM 稳定化所需的要求提供了重要的见解,这将作为理解 iMs 在细胞调控中的作用及其作为治疗靶点的潜力的重要工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验