Tao Benfu, Yang Wensheng, Zhou Min, Qiu Liren, Lu Shengshang, Wang Xinhai, Zhao Qian, Xie Quan, Ruan Yunjun
Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.
J Colloid Interface Sci. 2022 Sep;621:139-148. doi: 10.1016/j.jcis.2022.04.076. Epub 2022 Apr 13.
To meet the crucial demand for high-performance supercapacitors, much effort has been devoted to exploring electrode materials with nanostructures and electroactive chemical compositions. Herein, iron carbide nanoparticles are encapsulated into carbon nanofibers (FeC@CNF-650) through electrospinning and annealing methods. Nickel-cobalt sulfide nanoparticles are hydrothermally grown on electrospun carbon nanofibers (CNF@NiCoS-650). The Faradaic electrochemical reactions of transition metal compounds improve the specific capacitance of the developed electrode. Meanwhile, the electrically conductive framework of carbon nanofibers facilitates Faradic charge transport. In detail, the FeC@CNF-650 anode and CNF@NiCoS-650 cathode achieve specific capacitances of 1551 and 205 F g, respectively, at a current density of 1 A g. A hybrid supercapacitor that is fabricated from the FeC@CNF-650 anode and CNF@NiCoS-650 cathode delivers an energy density of 43.2 Wh kg at a power density of 800 W kg. The designed nanostructures are promising for practical supercapacitor applications.
为满足对高性能超级电容器的关键需求,人们致力于探索具有纳米结构和电活性化学成分的电极材料。在此,通过静电纺丝和退火方法将碳化铁纳米颗粒封装到碳纳米纤维中(FeC@CNF-650)。硫化镍钴纳米颗粒在静电纺丝碳纳米纤维上水热生长(CNF@NiCoS-650)。过渡金属化合物的法拉第电化学反应提高了所制备电极的比电容。同时,碳纳米纤维的导电框架促进了法拉第电荷传输。具体而言,FeC@CNF-650阳极和CNF@NiCoS-650阴极在电流密度为1 A g时,比电容分别达到1551和205 F g。由FeC@CNF-650阳极和CNF@NiCoS-650阴极制成的混合超级电容器在功率密度为800 W kg时,能量密度为43.2 Wh kg。所设计的纳米结构在实际超级电容器应用中具有广阔前景。