Suppr超能文献

超极化激活阳离子电流 I 在成年小鼠心脏起搏细胞中的频率依赖性特性。

Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, I, in Adult Mouse Heart Primary Pacemaker Myocytes.

机构信息

Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.

Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.

出版信息

Int J Mol Sci. 2022 Apr 13;23(8):4299. doi: 10.3390/ijms23084299.

Abstract

A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, I, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (-70 to -50 mV), which corresponds to the 'pacemaker depolarization' in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of I channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in I, and the well-known increases in the L-type Ca current, I, demonstrated that I activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, I contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing I, our simulations reveal a novel functional component of I in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of I and opening of I channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes.

摘要

已经广泛研究了调节哺乳动物心脏窦房结(SAN)的肌源性自发性起搏活动的许多不同的电生理机制。人们普遍认为涉及几种(3 或 4)不同的跨膜离子电流变化(称为电压时钟);并且由此产生的净电流与细胞内 Ca 变化的直接和间接影响(钙时钟)相互作用。然而,对于许多单个离子通道或交换介导的跨膜电流变化在 SAN 自发性起搏中的功能作用,仍然存在重大不确定性和重要的知识差距。我们报告了来自.patch clamp 研究和数学模型的结果,该模型研究了在成年小鼠窦房结(SAN)中通过酶分离的单个心肌细胞产生/调节的去极化激活电流(I)在起搏电位(起搏电位)中的作用。在 35°C 下进行了两性霉素介导的贴壁微电极记录,在对照条件下以及在 5 或 10 nM 异丙肾上腺素(ISO)存在下进行了记录。这些结果集通过对发生在膜电位范围内(-70 至-50 mV)的电流变化的数学建模进行了补充和整合,这对应于成年小鼠 SAN 中的“起搏去极化”。我们的结果揭示了在这些起搏心肌细胞中表达的 I 通道的残留激活产生的非常小但功能上重要的约稳态或与时间无关的电流。起搏去极化和动作电位的记录,结合 I 的变化测量以及众所周知的 L 型 Ca 电流的增加(I),证明 I 的激活对于肌源性起搏至关重要。此外,在 5 或 10 nM ISO 增强(约 3 倍)后,I 对正变时作用有重要贡献。我们的数学模型是为了更好地理解成年小鼠 SAN 心肌细胞起搏去极化和动作电位的潜在机制而开发的。在更新了描述 I 的新实验数据后,我们的模拟揭示了成年小鼠 SAN 中 I 的新功能成分。使用该模型进行的计算工作还证实,在 ISO 存在下,I 的残留激活和 I 通道的开放相结合,在缓慢的舒张去极化阶段产生净电流变化,这对于观察到的这些 SAN 心肌细胞的加速起搏率至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7181/9024942/1659a49f436e/ijms-23-04299-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验