Suppr超能文献

利用大数据分析“反向工程”蛋白质构象选择机制。

Using Big Data Analytics to "Back Engineer" Protein Conformational Selection Mechanisms.

机构信息

Department of Computer Science, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.

Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA.

出版信息

Molecules. 2022 Apr 13;27(8):2509. doi: 10.3390/molecules27082509.

Abstract

In the living cells, proteins bind small molecules (or "ligands") through a "conformational selection" mechanism, where a subset of protein structures are capable of binding the small molecules well while most other protein structures are not capable of such binding. The present work uses machine learning approaches to identify, in a very large amount of protein:ligand complexes, what protein properties are associated with their capacity to bind small molecules. In order to do so, we calculate 40 physicochemical properties on about 1.5 millions of protein conformations: ligand and protein conformations. This work describes a machine learning approach to identify the unique physico-chemical descriptors of a protein that maximize the prediction rate of potential protein molecular conformations for the test case proteins ADORA2A (Adenosine A2a Receptor), ADRB2 (Adrenoceptor Beta 2) and OPRK1 (Opioid Receptor Kappa 1). We find adequate machine learning techniques can increase by an order of magnitude the identification of "binding protein conformations" in an otherwise very large ensemble of protein conformations, compared to random selection of protein conformations. This opens the door to the systematic identification of such "binding conformations" for proteins and provides a big data approach to the conformational selection mechanism.

摘要

在活细胞中,蛋白质通过“构象选择”机制与小分子(或“配体”)结合,其中一小部分蛋白质结构能够很好地结合小分子,而大多数其他蛋白质结构则不能结合。本工作使用机器学习方法在大量的蛋白质-配体复合物中识别与它们结合小分子能力相关的蛋白质特性。为此,我们在大约 150 万个蛋白质构象:配体和蛋白质构象上计算了 40 种物理化学特性。这项工作描述了一种机器学习方法,用于识别蛋白质的独特物理化学描述符,以最大化测试案例蛋白 ADORA2A(腺苷 A2a 受体)、ADRB2(肾上腺素能受体β2)和 OPRK1(阿片受体κ1)的潜在蛋白质分子构象的预测率。我们发现,与随机选择蛋白质构象相比,适当的机器学习技术可以将“结合蛋白构象”的识别数量提高一个数量级,这为蛋白质的这种“结合构象”的系统识别开辟了道路,并为构象选择机制提供了一种大数据方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b1e/9025728/1d4a86579e69/molecules-27-02509-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验