Suppr超能文献

S-NER:一种简洁高效的基于跨度的命名实体识别模型。

S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition.

机构信息

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2022 Apr 8;22(8):2852. doi: 10.3390/s22082852.

Abstract

Named entity recognition (NER) is a task that seeks to recognize entities in raw texts and is a precondition for a series of downstream NLP tasks. Traditionally, prior NER models use the sequence labeling mechanism which requires label dependency captured by the conditional random fields (CRFs). However, these models are prone to cascade label misclassifications since a misclassified label results in incorrect label dependency, and so some following labels may also be misclassified. To address the above issue, we propose S-NER, a span-based NER model. To be specific, S-NER first splits raw texts into text spans and regards them as candidate entities; it then directly obtains the types of spans by conducting entity type classifications on span semantic representations, which eliminates the requirement for label dependency. Moreover, S-NER has a concise neural architecture in which it directly uses BERT as its encoder and a feed-forward network as its decoder. We evaluate S-NER on several benchmark datasets across three domains. Experimental results demonstrate that S-NER consistently outperforms the strongest baselines in terms of F1-score. Extensive analyses further confirm the efficacy of S-NER.

摘要

命名实体识别(NER)是一项旨在识别原始文本中实体的任务,是一系列下游自然语言处理任务的前提。传统上,先前的 NER 模型使用序列标注机制,该机制需要条件随机场(CRFs)捕获标签依赖关系。然而,这些模型容易发生级联标签错误分类,因为错误分类的标签会导致不正确的标签依赖关系,因此一些后续标签也可能被错误分类。为了解决上述问题,我们提出了 S-NER,一种基于跨度的 NER 模型。具体来说,S-NER 首先将原始文本拆分为文本跨度,并将它们视为候选实体;然后,它通过对跨度语义表示进行实体类型分类,直接获得跨度的类型,从而消除了对标签依赖关系的要求。此外,S-NER 具有简洁的神经架构,它直接使用 BERT 作为编码器,使用前馈网络作为解码器。我们在三个领域的多个基准数据集上评估了 S-NER。实验结果表明,S-NER 在 F1 分数方面始终优于最强基线。进一步的分析证实了 S-NER 的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a82/9030542/56a6ee0c5038/sensors-22-02852-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验