Suppr超能文献

基于 ConvLSTM 架构的异常人类活动识别新方法。

A New Approach for Abnormal Human Activities Recognition Based on ConvLSTM Architecture.

机构信息

Department of Multimedia and Information-Communication Technologies, University of Zilina, 010 26 Zilina, Slovakia.

出版信息

Sensors (Basel). 2022 Apr 12;22(8):2946. doi: 10.3390/s22082946.

Abstract

Recognizing various abnormal human activities from video is very challenging. This problem is also greatly influenced by the lack of datasets containing various abnormal human activities. The available datasets contain various human activities, but only a few of them contain non-standard human behavior such as theft, harassment, etc. There are datasets such as KTH that focus on abnormal activities such as sudden behavioral changes, as well as on various changes in interpersonal interactions. The UCF-crime dataset contains categories such as fighting, abuse, explosions, robberies, etc. However, this dataset is very time consuming. The events in the videos occur in a few seconds. This may affect the overall results of the neural networks that are used to detect the incident. In this article, we create a dataset that deals with abnormal activities, containing categories such as Begging, Drunkenness, Fight, Harassment, Hijack, Knife Hazard, Normal Videos, Pollution, Property Damage, Robbery, and Terrorism. We use the created dataset for the training and testing of the ConvLSTM (convolutional long short-term memory) neural network, which we designed. However, we also test the created dataset using other architectures. We use ConvLSTM architectures and 3D Resnet50, 3D Resnet101, and 3D Resnet152. With the created dataset and the architecture we designed, we obtained an accuracy of classification of 96.19% and a precision of 96.50%.

摘要

从视频中识别各种异常人类活动极具挑战性。这个问题也受到缺乏包含各种异常人类活动的数据集的极大影响。现有的数据集包含各种人类活动,但只有少数包含非标准的人类行为,如盗窃、骚扰等。有一些数据集,如 KTH,专注于异常活动,如突然的行为变化,以及各种人际互动的变化。UCF-crime 数据集包含打斗、虐待、爆炸、抢劫等类别。然而,这个数据集非常耗时。视频中的事件只发生在几秒钟内。这可能会影响用于检测事件的神经网络的整体结果。在本文中,我们创建了一个处理异常活动的数据集,包含乞讨、醉酒、打斗、骚扰、劫持、刀具危险、正常视频、污染、财产损失、抢劫和恐怖主义等类别。我们使用创建的数据集对我们设计的 ConvLSTM(卷积长短期记忆)神经网络进行训练和测试。然而,我们也使用其他架构来测试创建的数据集。我们使用 ConvLSTM 架构和 3D Resnet50、3D Resnet101 和 3D Resnet152。使用创建的数据集和我们设计的架构,我们获得了 96.19%的分类准确率和 96.50%的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09df/9028541/a9be0e10f304/sensors-22-02946-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验