Suppr超能文献

基于元启发式优化非局部均值滤波器的小波变换对单通道 EEG 中的自动肌肉伪迹识别与去除

Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter.

机构信息

Department of Electrical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India.

Department of Information Technology, Gauhati University, Guwahati 781014, Assam, India.

出版信息

Sensors (Basel). 2022 Apr 12;22(8):2948. doi: 10.3390/s22082948.

Abstract

Electroencephalogram (EEG) signals may get easily contaminated by muscle artifacts, which may lead to wrong interpretation in the brain-computer interface (BCI) system as well as in various medical diagnoses. The main objective of this paper is to remove muscle artifacts without distorting the information contained in the EEG. A novel multi-stage EEG denoising method is proposed for the first time in which wavelet packet decomposition (WPD) is combined with a modified non-local means (NLM) algorithm. At first, the artifact EEG signal is identified through a pre-trained classifier. Next, the identified EEG signal is decomposed into wavelet coefficients and corrected through a modified NLM filter. Finally, the artifact-free EEG is reconstructed from corrected wavelet coefficients through inverse WPD. To optimize the filter parameters, two meta-heuristic algorithms are used in this paper for the first time. The proposed system is first validated on simulated EEG data and then tested on real EEG data. The proposed approach achieved average mutual information (MI) as 2.9684 ± 0.7045 on real EEG data. The result reveals that the proposed system outperforms recently developed denoising techniques with higher average MI, which indicates that the proposed approach is better in terms of quality of reconstruction and is fully automatic.

摘要

脑电图 (EEG) 信号可能容易受到肌肉伪影的污染,这可能导致脑机接口 (BCI) 系统以及各种医学诊断中的错误解释。本文的主要目的是在不扭曲 EEG 中包含的信息的情况下去除肌肉伪影。本文首次提出了一种新颖的多阶段 EEG 去噪方法,该方法将小波包分解 (WPD) 与改进的非局部均值 (NLM) 算法相结合。首先,通过预训练的分类器识别出有伪影的 EEG 信号。接下来,将识别出的 EEG 信号分解为小波系数,并通过改进的 NLM 滤波器进行修正。最后,通过逆 WPD 从校正后的小波系数重建无伪影的 EEG。为了优化滤波器参数,本文首次使用了两种元启发式算法。该系统首先在模拟 EEG 数据上进行验证,然后在真实 EEG 数据上进行测试。该方法在真实 EEG 数据上实现了平均互信息 (MI) 为 2.9684±0.7045。结果表明,所提出的系统优于最近开发的去噪技术,具有更高的平均 MI,这表明该方法在重建质量方面表现更好,并且是全自动的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f032/9030243/06526a5370a5/sensors-22-02948-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验