Suppr超能文献

一种用于软件定义物联网(SD-IoT)中控制器放置的有效方法。

An Effective Approach for Controller Placement in Software-Defined Internet-of-Things (SD-IoT).

作者信息

Ali Jehad, Roh Byeong-Hee

机构信息

Department of Computer Engineering, Ajou University, Suwon 16499, Korea.

Department of AI Convergence Network, Ajou University, Suwon 16499, Korea.

出版信息

Sensors (Basel). 2022 Apr 13;22(8):2992. doi: 10.3390/s22082992.

Abstract

The Software-Defined Networking (SDN) paradigm has transferred network intelligence from network devices to a centralized controller. Controllers are distributed in a network to eliminate a single point of failure (SPOF) and improve reliability and balance load. In Software-Defined Internet of Things (SD-IoT), sensors exchange data with a controller on a regular basis. If the controllers are not appropriately located in SD-IoT, the E2E latency between the switches, to which the sensors are connected, and the controller increases. However, examining the placement of controllers in relation to the whole network is not an efficient technique since applying the objective function to the entire network is a difficult operation. As a result, segmenting the network into clusters improves the efficiency with which switches are assigned to the controller. As a result, in this research, we offer an effective clustering strategy for controller placement in SDN that leverages the Analytical Network Process (ANP), a multi-criteria decision-making (MCDM) scheme. The simulation results demonstrated on real Internet topologies suggest that our proposed method outperforms the standard k-means approach in terms of E2E delay, controller-to-controller (C2C) delay, the fair allocation of switches in the network, and the communication overhead.

摘要

软件定义网络(SDN)范式已将网络智能从网络设备转移到集中式控制器。控制器分布在网络中以消除单点故障(SPOF)并提高可靠性和平衡负载。在软件定义物联网(SD-IoT)中,传感器定期与控制器交换数据。如果控制器在SD-IoT中放置不当,传感器所连接的交换机与控制器之间的端到端延迟就会增加。然而,检查控制器相对于整个网络的放置情况并非有效方法,因为将目标函数应用于整个网络是一项困难的操作。因此,将网络划分为集群可提高将交换机分配给控制器的效率。因此,在本研究中,我们提出了一种用于SDN中控制器放置的有效聚类策略,该策略利用了多准则决策(MCDM)方案——网络层次分析法(ANP)。在真实互联网拓扑上的仿真结果表明,我们提出的方法在端到端延迟、控制器到控制器(C2C)延迟、网络中交换机的公平分配以及通信开销方面优于标准的k均值方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5d9/9032509/9a7475778b64/sensors-22-02992-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验