Suppr超能文献

用于成本效益概率测度的回归框架。

A regression framework for a probabilistic measure of cost-effectiveness.

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Health Econ. 2022 Jul;31(7):1438-1451. doi: 10.1002/hec.4517. Epub 2022 Apr 22.

Abstract

To make informed health policy decisions regarding a treatment, we must consider both its cost and its clinical effectiveness. In past work, we introduced the net benefit separation (NBS) as a novel measure of cost-effectiveness. The NBS is a probabilistic measure that characterizes the extent to which a treated patient will be more likely to experience benefit as compared to an untreated patient. Due to variation in treatment response across patients, uncovering factors that influence cost-effectiveness can assist policy makers in population-level decisions regarding resource allocation. In this paper, we introduce a regression framework for NBS in order to estimate covariate-specific NBS and find determinants of variation in NBS. Our approach is able to accommodate informative cost censoring through inverse probability weighting techniques, and addresses confounding through a semiparametric standardization procedure. Through simulations, we show that NBS regression performs well in a variety of common scenarios. We apply our proposed regression procedure to a realistic simulated data set as an illustration of how our approach could be used to investigate the association between cancer stage, comorbidities and cost-effectiveness when comparing adjuvant radiation therapy and chemotherapy in post-hysterectomy endometrial cancer patients.

摘要

为了在治疗方面做出明智的卫生政策决策,我们必须同时考虑成本和临床效果。在过去的工作中,我们引入了净效益分离(NBS)作为一种新的成本效益衡量标准。NBS 是一种概率性的衡量标准,用于描述治疗患者比未治疗患者更有可能受益的程度。由于患者之间的治疗反应存在差异,发现影响成本效益的因素可以帮助决策者在资源分配方面做出人群水平的决策。在本文中,我们引入了 NBS 的回归框架,以估计协变量特异性 NBS 并找到 NBS 变化的决定因素。我们的方法能够通过逆概率加权技术来处理信息性成本删失,并通过半参数标准化程序来解决混杂问题。通过模拟,我们表明 NBS 回归在各种常见情况下表现良好。我们将我们提出的回归程序应用于一个现实的模拟数据集,以说明我们的方法如何用于研究在子宫切除术子宫内膜癌患者中比较辅助放疗和化疗时癌症分期、合并症与成本效益之间的关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验