Xiao Hui, Duo Lan, Zhen James, Wang Hongsu, Guo Zhefeng
Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
Biochem Biophys Res Commun. 2022 Jun 25;610:107-112. doi: 10.1016/j.bbrc.2022.04.036. Epub 2022 Apr 15.
Deposition of Aβ aggregates in the form of amyloid fibrils is a pathological hallmark of Alzheimer's disease. Understanding the structure and dynamics of Aβ fibrils is important for delineating the mechanism of Aβ aggregation and developing effective therapeutic strategies. Here we used site-directed spin labeling and EPR spectroscopy to study the Aβ40 fibril structure and dynamics. We obtained the EPR spectra of 40 spin-labeled Aβ40 fibril samples, with spin labeling coverage of the entire Aβ40 sequence. Analysis of the spin exchange interaction and spin label mobility using spectral simulations suggest that the strength of spin exchange interaction is primarily determined by static disorder in the Aβ40 fibrils. EPR data suggest that the entire Aβ40 sequence except residue D1 is highly ordered and the two hydrophobic regions at residues 17-20 and 31-36 show the lowest static disorder. Dynamic disorder is relatively constant across all reside positions, with residues 22 and 23 having the highest dynamic disorder. Comparison of the EPR data for Aβ40 and Aβ42 fibrils shows overall more ordered packing interactions in Aβ40 fibrils. Another noteworthy difference is the C-terminal residue, which has high static disorder in Aβ42 fibrils, but is ordered in Aβ40 fibrils. The higher static disorder in Aβ42 fibrils may lead to increased fragmentation, monomer dissociation, and structural defects, which may contribute to increased aggregation through secondary nucleation.
以淀粉样纤维形式存在的β淀粉样蛋白(Aβ)聚集体沉积是阿尔茨海默病的病理标志。了解Aβ纤维的结构和动力学对于阐明Aβ聚集机制和制定有效的治疗策略至关重要。在此,我们使用定点自旋标记和电子顺磁共振波谱(EPR)来研究Aβ40纤维的结构和动力学。我们获得了40个自旋标记的Aβ40纤维样品的EPR谱,自旋标记覆盖了整个Aβ40序列。通过光谱模拟对自旋交换相互作用和自旋标记流动性进行分析表明,自旋交换相互作用的强度主要由Aβ40纤维中的静态无序决定。EPR数据表明,除D1残基外,整个Aβ40序列高度有序,17 - 20位和31 - 36位的两个疏水区域显示出最低的静态无序。动态无序在所有残基位置相对恒定,22位和23位残基具有最高的动态无序。Aβ40和Aβ42纤维的EPR数据比较表明,Aβ40纤维中整体堆积相互作用更有序。另一个值得注意的差异是C末端残基,其在Aβ42纤维中具有高静态无序,但在Aβ40纤维中是有序的。Aβ42纤维中较高的静态无序可能导致片段化增加、单体解离和结构缺陷增加,这可能通过二次成核促进聚集增加。