CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
Adv Sci (Weinh). 2022 Jun;9(18):e2201339. doi: 10.1002/advs.202201339. Epub 2022 Apr 24.
The active sites and charge/mass transfer properties in electrocatalysts play vital roles in kinetics and thermodynamics of electrocatalysis, and impose direct impacts on electrocatalytic performance, which cannot be achieved by a simplex structure. As a prototype, the authors propose a double-heterojunctional nanostructure of NiS /Ni C@C containing NiS /Ni C and Ni C/C heterojunctions as a general model to optimize the above issues and boost electrocatalytic performance. During the thermal reorganization, the in situ reaction between NiS nanoparticles and carbon induces the formation of Ni C between them and constructs tightly contacted two kinds of interfaces among the three components. The TEM and XPS reveal the intimately contacted three components and the as-constructed interacted dual interfaces, further confirming the formation of a porous double-heterojunctional nanostructure. Theoretical calculations uncover that the electron density redistribution occurs at Ni C/C interface by spontaneous electron transfer from defected carbon to Ni C and lower ΔG achieves at NiS /Ni C interface by the concentrated interfacial charge density, which favors the simultaneous realization of high catalytic activity and rapid charge/mass transfer. When applied for hydrogen evolution reaction (HER), the porous double-heterojunctional NiS /Ni C@C exhibits excellent HER activity and durability among all pH values. Profoundly, this special double-heterojunctional structure can provide a new model for high-performance electrocatalysts and beyond.
电催化剂中的活性位点和电荷/质量转移特性在电催化动力学和热力学中起着至关重要的作用,并直接影响电催化性能,这是单纯的结构无法实现的。作为一个原型,作者提出了一种包含 NiS/NiC 和 NiC/C 异质结的 NiS/NiC@C 双异质结构纳米材料作为一种通用模型,以优化上述问题并提高电催化性能。在热重组过程中,NiS 纳米粒子与碳之间的原位反应导致它们之间形成 NiC,并构建了三种组分之间紧密接触的两种类型的界面。TEM 和 XPS 揭示了紧密接触的三种组分和构建的相互作用的双界面,进一步证实了多孔双异质结构纳米材料的形成。理论计算揭示了缺陷碳向 NiC 的自发电子转移导致 NiC/C 界面处的电子密度重新分布,而集中的界面电荷密度使 NiS/NiC 界面处的 ΔG 降低,这有利于同时实现高催化活性和快速的电荷/质量转移。当应用于析氢反应 (HER) 时,多孔双异质结构 NiS/NiC@C 在所有 pH 值下均表现出优异的 HER 活性和耐久性。深刻地说,这种特殊的双异质结构可为高性能电催化剂及其他领域提供一种新的模型。