Suppr超能文献

放射科住院医师与深度学习系统在前列腺癌检测中的伪前瞻性临床交互作用:经验、性能以及对间歇性重新校准需求的识别。

Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection: Experience, Performance, and Identification of the Need for Intermittent Recalibration.

机构信息

From the Division of Radiology, German Cancer Research Center (DKFZ).

Department of Urology, University of Heidelberg Medical Center.

出版信息

Invest Radiol. 2022 Sep 1;57(9):601-612. doi: 10.1097/RLI.0000000000000878. Epub 2022 Apr 21.

Abstract

OBJECTIVES

The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI).

MATERIALS AND METHODS

The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages.

RESULTS

A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively ( P = 0.30/ P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful.

CONCLUSIONS

Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.

摘要

目的

本研究旨在评估先前回顾性验证的卷积神经网络(CNN)在前列腺磁共振成像(MRI)上检测前列腺癌(PC)的前瞻性效用。

材料与方法

在 2019 年 11 月至 2020 年 9 月期间,连续纳入的男性患者的双参数(T2 加权和扩散加权)部分临床多参数前列腺 MRI ,在图像采集后由 CNN 进行全自动和个体化分析(伪前瞻性设计)。放射科住院医师在查看 CNN 结果前后独立完成 2 次研究性前列腺成像报告和数据系统(PI-RADS)对多参数数据集的评估(平行临床设计),并完成了一项调查。临床显著 PC 的存在通过国际泌尿病理学会(ISUP)分级 2 级或更高的 PC 在联合靶向和扩展系统经会阴 MRI/经直肠超声融合活检中的存在来确定。使用 McNemar 检验比较了患者和前列腺六区基础上的敏感度和特异度,并与 CNN 的接收者操作特征(ROC)曲线进行了比较。调查结果以绝对计数和百分比进行总结。

结果

共纳入 201 名男性。CNN 在患者基础上的 ROC 曲线下面积为 0.77。使用 PI-RADS≥3 模拟概率阈值(c3),CNN 的患者基础敏感度为 81.8%,特异性为 54.8%,与当前临床常规 PI-RADS≥4 评估分别为 90.9%和 54.8%无统计学差异(P=0.30/ P=1.0)。总体而言,在接受 CNN 检查前后,住院医师的敏感性和特异性相似。在前列腺六区基础上,临床评估的 ROC 曲线下面积最高,为 0.82,高于 CNN(AUC=0.76,P=0.21),也显著高于 CNN 检查前后住院医师的表现(AUC=0.76/0.76,P≤0.03)。住院医师的调查表明 CNN 具有辅助作用,且具有临床意义。

结论

本研究证明了在前列腺多参数 MRI 上对可疑病变进行完全自动基于 CNN 的检测的伪前瞻性平行临床整合,在住院医师中获得了良好的认可,尽管 CNN 的校准有所改变,但并未发现住院医师表现的显著改善。尽管观察到 CNN 校准的变化,但 CNN 的整体性能得以保留,这需要持续的质量控制和重新校准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验