Abou Taka Ali, Lu Shao-Yu, Gowland Duncan, Zuehlsdorff Tim J, Corzo Hector H, Pribram-Jones Aurora, Shi Liang, Hratchian Hrant P, Isborn Christine M
Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States.
Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
J Chem Theory Comput. 2022 May 10;18(5):3039-3051. doi: 10.1021/acs.jctc.1c01127. Epub 2022 Apr 26.
The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S and dark S surfaces near the S minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S/S state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.
光谱模拟对于分子表征至关重要,在许多情况下,对于解释实验光谱也至关重要。模拟振动 - 电子吸收光谱最常用的方法依赖于基态和激发电子态的几何结构优化以及简正模式的计算。在本报告中,我们表明在绝热线性响应(LR)理论框架内使用这样的程序可能会导致态混合以及玻恩 - 奥本海默近似的失效,从而导致对吸收光谱的描述不佳。相比之下,通过自洽场方法结合最大重叠模型计算激发态会产生不受此类混合影响的态。我们表明,后一种方法产生的振动 - 电子光谱与垂直梯度和基于分子动力学(MD)轨迹的方法更为一致。对于亚甲基蓝发色团,我们比较了用以下方法计算的振动 - 电子吸收光谱:具有LR理论优化结构和简正模式的绝热海森矩阵方法、垂直梯度程序、最大重叠方法优化结构的海森矩阵和简正模式,以及从MD轨迹生成的激发能时间相关函数。由于在S最小值附近明亮的S和暗的S表面之间存在混合,使用LR理论和含时密度泛函理论(采用B3LYP密度泛函)计算绝热海森矩阵预测吸收光谱会有一个大的振动 - 电子肩峰,而其他任何方法都不存在这种情况。我们分析了光谱密度,并比较了在LR理论中与光激发强烈耦合同时显示S/S态混合的关键简正模式的行为。总体而言,我们的研究提醒在使用LR理论优化结构的激发态绝热海森矩阵计算振动 - 电子光谱时要谨慎,同时还展示了三种对绝热态混合效应不太敏感的替代方法。