Department of Biological and Agricultural Engineering, University of California Davis, CA 95616, USA.
College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
J Hazard Mater. 2022 Aug 5;435:128982. doi: 10.1016/j.jhazmat.2022.128982. Epub 2022 Apr 20.
Flavin mononucleotide (FMN) produces photo-induced reactive oxygen species (ROS), making it a bio-based and sustainable photosensitizer for micropollutant degradation. However, the rapid self-degradation of FMN under light poses challenges in practical applications. We propose for the first time to use porous organic polymer (POP) structures as particles and in situ grown on nanofibrous membranes to capture the ribityl side chain ("tail") of FMN by electrostatic-driven guest-host interaction. By restraining the free bending mode of FMN in POP, its self-degradation is highly inhibited, showing a prolonged half-life (102.7 and 79.7 times to that in solution and in β-cyclodextrin, respectively) without any impact on the ROS production even after 16 h of UVA irradiation. As a proof-of-concept, the photocatalytic degradation efficiency of FMN-POP complexes can be achieved at 58-93% against micropollutants under UVA. The stabilization of FMN by the "tail" capture in the POP allows its photocatalytic degradation function to be continuously online.
黄素单核苷酸 (FMN) 会产生光致活性氧 (ROS),使其成为一种基于生物且可持续的用于微污染物降解的光敏剂。然而,FMN 在光照下的快速自降解在实际应用中带来了挑战。我们首次提出使用多孔有机聚合物 (POP) 结构作为颗粒,并原位生长在纳米纤维膜上,通过静电驱动的主客体相互作用捕获 FMN 的核糖侧链(“尾巴”)。通过限制 FMN 在 POP 中的自由弯曲模式,高度抑制了其自降解,半衰期延长(在溶液中和 β-环糊精中的半衰期分别延长了 102.7 和 79.7 倍),即使在 UVA 照射 16 小时后,对 ROS 的产生也没有任何影响。作为概念验证,在 UVA 下,FMN-POP 配合物对微污染物的光催化降解效率可达到 58-93%。POP 中“尾巴”捕获对 FMN 的稳定作用允许其光催化降解功能持续在线。