Suppr超能文献

变维心电图检测心律失常的若干关键问题研究。

A study on several critical problems on arrhythmia detection using varying-dimensional electrocardiography.

机构信息

Tianjin Medical University, Tianjin, People's Republic of China.

LMIB and School of Mathematical Sciences, Beihang University, Beijing, People's Republic of China.

出版信息

Physiol Meas. 2022 Jun 28;43(6). doi: 10.1088/1361-6579/ac6aa3.

Abstract

. This work tries to provide answers to several critical questions on varying-dimensional electrocardiography (ECG) raised by the PhysioNet/Computing in Cardiology Challenge 2021 (CinC2021): can subsets of the standard 12 leads provide models with adequate information to give comparable performances for classifying ECG abnormalities? Can models be designed to be effective enough to classify a broad range of ECG abnormalities?. To tackle these problems, we (challenge team name 'Revenger') propose several novel architectures within the framework of convolutional recurrent neural networks. These deep learning models are proven effective, and moreover, they provide comparable performances on reduced-lead ECGs, even in the extreme case of 2-lead ECGs. In addition, we propose a 'lead-wise' mechanism to facilitate parameter reuse of ECG neural network models. This mechanism largely reduces model sizes while keeping comparable performances. To further augment model performances on specific ECG abnormalities and to improve interpretability, we manually design auxiliary detectors based on clinical diagnostic rules.. In the post-challenge session, our approach achieved a challenge score of 0.38, 0.40, 0.41, 0.40, 0.35 on the 12, 6, 4, 3, 2-lead subsets respectively on the CinC2021 hidden test set.. The proposed approach gives positive answers to the critical questions CinC2021 raises and lays a solid foundation for further research in the future on these topics.

摘要

. 本工作旨在回答 PhysioNet/Computing in Cardiology Challenge 2021 (CinC2021) 提出的关于变维心电图 (ECG) 的几个关键问题:标准 12 导联中的子集能否提供具有足够信息的模型,从而实现对 ECG 异常的分类性能相当?能否设计模型以具有足够的有效性,从而对广泛的 ECG 异常进行分类?为了解决这些问题,我们(挑战团队名为“Revenger”)在卷积递归神经网络框架内提出了几种新的架构。这些深度学习模型被证明是有效的,而且,它们在导联数减少的 ECG 上提供了相当的性能,即使在 2 导联 ECG 的极端情况下也是如此。此外,我们提出了一种“导联特定”机制,以促进 ECG 神经网络模型的参数重用。该机制在保持相当性能的同时,大大减小了模型的大小。为了进一步提高模型在特定 ECG 异常上的性能并提高可解释性,我们根据临床诊断规则手动设计了辅助检测器。在赛后阶段,我们的方法在 CinC2021 隐藏测试集上分别在 12、6、4、3、2 导联子集上获得了 0.38、0.40、0.41、0.40、0.35 的挑战得分。该方法对 CinC2021 提出的关键问题给出了肯定的答案,并为未来在这些主题上的进一步研究奠定了坚实的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验