Suppr超能文献

利用人工神经网络处理的激光雷达测量来描述飞机尾流涡旋的位置和强度。

Characterizing aircraft wake vortex position and strength using LiDAR measurements processed with artificial neural networks.

出版信息

Opt Express. 2022 Apr 11;30(8):13197-13225. doi: 10.1364/OE.454525.

Abstract

The position and strength of wake vortices captured by LiDAR (Light Detection and Ranging) instruments are usually determined by conventional approaches such as the Radial Velocity (RV) method. Promising wake vortex detection results of LiDAR measurements using machine learning and operational drawbacks of the comparatively slow traditional processing methods motivate exploring the suitability of Artificial Neural Networks (ANNs) for quantitatively estimating the position and strength of aircraft wake vortices. The ANNs are trained by a unique data set of wake vortices generated by aircraft during final approach, which are labeled using the RV method. First comparisons reveal the potential of custom Convolutional Neural Networks in comparison to readily available resources as well as traditional LiDAR processing algorithms.

摘要

激光雷达(Light Detection and Ranging)仪器捕获的尾流位置和强度通常通过传统方法确定,例如径向速度(Radial Velocity,RV)方法。使用机器学习进行激光雷达测量的有前途的尾流检测结果以及传统处理方法相对较慢的操作缺点,促使人们探索人工神经网络(Artificial Neural Networks,ANNs)是否适合定量估计飞机尾流的位置和强度。通过使用 RV 方法对飞机在最后进近过程中产生的尾流的独特数据集进行训练,得到 ANN。初步比较表明,与现成资源和传统激光雷达处理算法相比,自定义卷积神经网络具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验