Suppr超能文献

用于高速多维超分辨率成像的 SIM 重建框架。

SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging.

出版信息

Opt Express. 2022 Mar 28;30(7):10877-10898. doi: 10.1364/OE.450136.

Abstract

Structured illumination microscopy (SIM) holds great promise for live cell imaging applications due to its potential to obtain multidimensional information such as intensity, spectrum and polarization (I, λ , p) at high spatial-temporal resolution, enabling the observation of more complex dynamic interactions between subcellular structures. However, the reconstruction results of polarized samples are prone to artifacts because all current SIM reconstruction frameworks use incomplete imaging models which neglect polarization modulation. Such polarization-related artifacts are especially prevalent for SIM reconstruction using a reduced number of raw images (RSIM) and severely undermine the ability of SIM to capture multi-dimensional information. Here, we report a new SIM reconstruction framework (PRSIM) that can recover multi-dimensional information (I, λ, p) using a reduced number of raw images. PRSIM adopts a complete imaging model that is versatile for normal and polarized samples and uses a frequency-domain iterative reconstruction algorithm for artifact-free super-resolution (SR) reconstruction. It can simultaneously obtain the SR spatial structure and polarization orientation of polarized samples using 6 raw SIM images and can perform SR reconstruction using 4 SIM images for normal samples. In addition, PRSIM has less spatial computational complexity and achieves reconstruction speeds tens of times higher than that of the state-of-the-art non-iterative RSIM, making it more suitable for large field-of-view imaging. Thus, PRSIM is expected to facilitate the development of SIM into an ultra-high-speed and multi-dimensional SR imaging tool.

摘要

结构光照明显微镜(SIM)由于其在高时空分辨率下获取强度、光谱和偏振(I、λ、p)等多维信息的潜力,在活细胞成像应用中具有广阔的前景,能够观察到更复杂的亚细胞结构之间的动态相互作用。然而,由于当前所有的 SIM 重建框架都使用不完整的成像模型,忽略了偏振调制,因此偏振样品的重建结果容易出现伪影。这种与偏振相关的伪影在使用较少原始图像(RSIM)进行 SIM 重建时尤为普遍,严重削弱了 SIM 捕获多维信息的能力。在这里,我们报告了一种新的 SIM 重建框架(PRSIM),它可以使用较少的原始图像恢复多维信息(I、λ、p)。PRSIM 采用了一种完整的成像模型,适用于正常和偏振样品,并使用频域迭代重建算法进行无伪影的超分辨率(SR)重建。它可以同时使用 6 个原始 SIM 图像获取偏振样品的 SR 空间结构和偏振方向,并可以使用 4 个 SIM 图像对正常样品进行 SR 重建。此外,PRSIM 的空间计算复杂度较低,重建速度比最先进的非迭代 RSIM 快数十倍,因此更适合大视场成像。因此,PRSIM 有望促进 SIM 发展成为一种超高速和多维 SR 成像工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验