Suppr超能文献

一种使用减少图像数量的频域结构光显微镜重建算法。

A frequency domain SIM reconstruction algorithm using reduced number of images.

作者信息

Lal Amit, Shan Chunyan, Zhao Kun, Liu Wenhui, Huang Xiaoshuai, Zong Weijian, Chen Liangyi, Xi Peng

出版信息

IEEE Trans Image Process. 2018 Sep;27(9):4555-4570. doi: 10.1109/TIP.2018.2842149. Epub 2018 May 30.

Abstract

Conventional two-dimensional structured illumination microscopy (SIM) requires 9 raw images to reconstruct a super-resolved image. In order to increase the frame rate of 2DSIM, attempts are being made to reduce the number of raw SIM images. However, all the proposed SIM reconstruction algorithms (SIM-RA) capable of reconstructing super-resolution (SR) image with a reduced number of raw SIM images operate in the spatial domain. Here, we present a frequency domain SIM-RA based on ordinary least squares technique, which enables reconstruction of SR image using 4 raw SIM images. Unlike the spatial domain RA, which produces the SR image through iterative convergence, the presented RA provides a single step solution. It also reveals the fundamental limitation of least number of raw images required for resolution doubling in SIM.

摘要

传统的二维结构光照明显微镜(SIM)需要9幅原始图像来重建超分辨率图像。为了提高2DSIM的帧率,人们正在尝试减少原始SIM图像的数量。然而,所有能够用减少数量的原始SIM图像重建超分辨率(SR)图像的SIM重建算法(SIM-RA)都在空间域中运行。在此,我们提出一种基于普通最小二乘法技术的频域SIM-RA,它能够使用4幅原始SIM图像重建SR图像。与通过迭代收敛产生SR图像的空间域RA不同,所提出的RA提供了单步解决方案。它还揭示了SIM中分辨率加倍所需的最少原始图像数量的基本限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验