Suppr超能文献

瑞士军刀偏最小二乘法(SKPLS):在 ROSA 框架下,用于对单块、多块、多向、多向多块(包括多响应和元信息)进行建模的一种工具。

Swiss knife partial least squares (SKPLS): One tool for modelling single block, multiblock, multiway, multiway multiblock including multi-responses and meta information under the ROSA framework.

机构信息

Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700AA, Wageningen, the Netherlands.

Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway.

出版信息

Anal Chim Acta. 2022 May 8;1206:339786. doi: 10.1016/j.aca.2022.339786. Epub 2022 Mar 30.

Abstract

In the domain of chemometrics and multivariate data analysis, partial least squares (PLS) modelling is a widely used technique. PLS gains its beauty by handling the high collinearity found in multivariate data by replacing highly covarying variables with common subspaces spanned by orthogonal latent variables. Furthermore, all can be achieved with simple steps of linear algebra requiring minimal computation power and time usage compared to current high-end computing and substantial hyperparameter tuning required by methods such as deep learning. PLS can be used for a wide variety of tasks, for example, single block modelling, multiblock modelling, multiway data modelling and for task such as regression and classification. Furthermore, new PLS based approaches can also incorporate meta information to improve the PLS subspace extraction. However, in the current scenario, there is a wide range of separate tools and codes available to perform different PLS tasks. Often when the user needs to perform a new PLS task, they need to start with a separate mathematical implementation of the PLS techniques. This study aims to provide a single solution, i.e., the Swiss knife PLS (SKPLS) modelling approach to enable a single mathematical implementation to perform analyses of single block, multiblock, multiway, multiblock multiway, multi-response, and incorporation of meta information in PLS modelling. It contains all that is needed for any PLS practitioner to perform both classification and regression tasks. The SKPLS backbone is the stepwise PLS strategy called response oriented sequential alternation (ROSA) which we generalize to enable all the mentioned analysis possibilities. The basic structure of the algorithm is highlighted, and some example cases of performing single block, multiblock, multiway, multiblock multiway, multi-response PLS modelling and the incorporation of meta information in PLS modelling are included.

摘要

在化学计量学和多元数据分析领域,偏最小二乘法(PLS)建模是一种广泛使用的技术。PLS 通过用正交潜在变量所张成的公共子空间替换高度共变的变量,从而处理多元数据中发现的高度共线性,这使其具有美感。此外,与深度学习等方法所需的当前高端计算和大量超参数调整相比,PLS 可以通过简单的线性代数步骤来实现,所需的计算能力和时间使用量都最小。PLS 可用于各种任务,例如,单块建模、多块建模、多向数据建模以及回归和分类等任务。此外,新的基于 PLS 的方法还可以纳入元信息以改进 PLS 子空间提取。然而,在当前情况下,有广泛的独立工具和代码可用于执行不同的 PLS 任务。通常,当用户需要执行新的 PLS 任务时,他们需要从 PLS 技术的单独数学实现开始。本研究旨在提供一种单一的解决方案,即瑞士军刀 PLS(SKPLS)建模方法,以实现单一的数学实现来执行单块、多块、多向、多块多向、多响应以及 PLS 建模中元信息的纳入分析。它包含了任何 PLS 从业者执行分类和回归任务所需的一切。SKPLS 的骨干是称为面向响应的顺序交替(ROSA)的逐步 PLS 策略,我们将其推广以实现所有提到的分析可能性。突出了算法的基本结构,并包括执行单块、多块、多向、多块多向、多响应 PLS 建模以及 PLS 建模中元信息纳入的一些示例案例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验