Suppr超能文献

氧化钴纳米颗粒修饰的氮掺杂碳纳米管:一种用于将硝酸盐还原为氨的高效催化剂。

CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia.

作者信息

Chen Qiru, Liang Jie, Yue Luchao, Luo Yongsong, Liu Qian, Li Na, Alshehri Abdulmohsen Ali, Li Tingshuai, Guo Haoran, Sun Xuping

机构信息

School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.

出版信息

Chem Commun (Camb). 2022 May 12;58(39):5901-5904. doi: 10.1039/d2cc00997h.

Abstract

Ambient electrochemical NO reduction is emerging as an appealing approach toward eliminating NO contaminants and generating NH simultaneously, but its efficiency is challenged by a lack of active and selective electrocatalysts. In this work, we report CoO nanoparticle decorated N-doped carbon nanotubes as an efficient catalyst for highly selective hydrogenation of NO to NH. In 0.1 M NaOH electrolyte with 0.1 M NO, this catalyst is capable of achieving a large NH yield of up to 9041.6 ± 370.7 μg h cm and a high faradaic efficiency of 93.8 ± 1.5%, with excellent durability. Theoretical calculations reveal the catalytic mechanisms.

摘要

环境电化学NO还原作为一种消除NO污染物并同时生成NH的有吸引力的方法正在兴起,但其效率受到缺乏活性和选择性电催化剂的挑战。在这项工作中,我们报道了CoO纳米颗粒修饰的N掺杂碳纳米管作为一种高效催化剂,用于将NO高度选择性地氢化为NH。在含有0.1 M NO的0.1 M NaOH电解质中,这种催化剂能够实现高达9041.6±370.7 μg h cm的高NH产率和93.8±1.5%的高法拉第效率,并且具有出色的耐久性。理论计算揭示了催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验