Suppr超能文献

用于研究膜污染的核磁共振光谱化学计量分析与机器学习

Chemometric Analysis of NMR Spectra and Machine Learning to Investigate Membrane Fouling.

作者信息

Yokoyama Daiki, Suzuki Sosei, Asakura Taiga, Kikuchi Jun

机构信息

RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

出版信息

ACS Omega. 2022 Apr 7;7(15):12654-12660. doi: 10.1021/acsomega.1c06891. eCollection 2022 Apr 19.

Abstract

Efficient membrane filtration requires the understanding of the membrane foulants and the functional properties of different membrane types in water purification. In this study, dead-end filtration of aquaculture system effluents was performed and the membrane foulants were investigated via nuclear magnetic resonance (NMR) spectroscopy. Several machine learning models (Random Forest; RF, Extreme Gradient Boosting; XGBoost, Support Vector Machine; SVM, and Neural Network; NN) were constructed, one to predict the maximum transmembrane pressure, for revealing the chemical compounds causing fouling, and the other to classify the membrane materials based on chemometric analysis of NMR spectra, for determining their effect on the properties of the different membrane types tested. Especially, RF models exhibited high accuracy; the important chemical shifts observed in both the regression and classification models suggested that the proportional patterns of sugars and proteins are key factors in the fouling progress and the classification of membrane types. Therefore, the proposed strategy of chemometric analysis of NMR spectra is suitable for membrane research, which aims at investigating comprehensively the fouling phenomenon and how the foulants and environmental conditions vary according to the filtration systems.

摘要

高效的膜过滤需要了解膜污染物以及不同膜类型在水净化中的功能特性。在本研究中,对水产养殖系统废水进行了死端过滤,并通过核磁共振(NMR)光谱对膜污染物进行了研究。构建了几种机器学习模型(随机森林;RF、极端梯度提升;XGBoost、支持向量机;SVM和神经网络;NN),一个用于预测最大跨膜压力,以揭示导致污染的化合物,另一个用于基于NMR光谱的化学计量分析对膜材料进行分类,以确定它们对所测试的不同膜类型性能的影响。特别是,RF模型表现出很高的准确性;在回归和分类模型中观察到的重要化学位移表明,糖和蛋白质的比例模式是污染过程和膜类型分类的关键因素。因此,所提出的NMR光谱化学计量分析策略适用于膜研究,该研究旨在全面调查污染现象以及污染物和环境条件如何根据过滤系统而变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bf9/9025983/b055ecadfbe6/ao1c06891_0002.jpg

相似文献

1
Chemometric Analysis of NMR Spectra and Machine Learning to Investigate Membrane Fouling.
ACS Omega. 2022 Apr 7;7(15):12654-12660. doi: 10.1021/acsomega.1c06891. eCollection 2022 Apr 19.
5
The Limitations in Current Studies of Organic Fouling and Future Prospects.
Membranes (Basel). 2021 Nov 25;11(12):922. doi: 10.3390/membranes11120922.
6
A physicochemical investigation of membrane fouling in cold microfiltration of skim milk.
J Dairy Sci. 2014;97(8):4759-71. doi: 10.3168/jds.2014-7957. Epub 2014 Jun 2.

引用本文的文献

1
Transcriptome analysis of the Japanese eel (Anguilla japonica) during larval metamorphosis.
BMC Genomics. 2024 Jun 11;25(1):585. doi: 10.1186/s12864-024-10459-z.
2
Deconvolution and Analysis of the H NMR Spectra of Crude Reaction Mixtures.
J Chem Inf Model. 2024 Apr 22;64(8):3008-3020. doi: 10.1021/acs.jcim.3c01864. Epub 2024 Apr 4.
3
An evaluation of homeostatic plasticity for ecosystems using an analytical data science approach.
Comput Struct Biotechnol J. 2023 Jan 4;21:869-878. doi: 10.1016/j.csbj.2023.01.001. eCollection 2023.
4
A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation.
Membranes (Basel). 2022 Dec 15;12(12):1271. doi: 10.3390/membranes12121271.

本文引用的文献

2
Predictive Modeling of NMR Chemical Shifts without Using Atomic-Level Annotations.
J Chem Inf Model. 2020 Aug 24;60(8):3765-3769. doi: 10.1021/acs.jcim.0c00494. Epub 2020 Jul 31.
3
Prediction of Natural Product Classes Using Machine Learning and C NMR Spectroscopic Data.
J Chem Inf Model. 2020 Jul 27;60(7):3376-3386. doi: 10.1021/acs.jcim.0c00293. Epub 2020 Jul 6.
5
Best Practices in Utilization of 2D-NMR Spectral Data as the Input for Chemometric Analysis in Biopharmaceutical Applications.
J Chem Inf Model. 2020 Apr 27;60(4):2339-2355. doi: 10.1021/acs.jcim.0c00081. Epub 2020 Apr 6.
6
NMR Spectroscopy for Metabolomics Research.
Metabolites. 2019 Jun 27;9(7):123. doi: 10.3390/metabo9070123.
7
Critical review of EPS production, synthesis and composition for sludge flocculation.
J Environ Sci (China). 2018 Apr;66:225-245. doi: 10.1016/j.jes.2017.05.020. Epub 2017 May 22.
8
Environmental metabolomics with data science for investigating ecosystem homeostasis.
Prog Nucl Magn Reson Spectrosc. 2018 Feb;104:56-88. doi: 10.1016/j.pnmrs.2017.11.003. Epub 2017 Nov 21.
9
Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining Important Variables.
Anal Chem. 2018 Feb 6;90(3):1805-1810. doi: 10.1021/acs.analchem.7b03795. Epub 2018 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验