Suppr超能文献

深入了解杂原子掺杂共价三嗪框架中电子和自旋结构在去除有机微量污染物方面的关键作用。

Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants.

机构信息

College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. China.

Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhais, Zhuhai 519087, P. R. China.

出版信息

Environ Sci Technol. 2022 May 17;56(10):6699-6709. doi: 10.1021/acs.est.2c01781. Epub 2022 Apr 27.

Abstract

The water shortage crisis, characterized by organic micropollutants (OMPs), urgently requires new materials and methods to deal with it. Although heteroatom doping has been developed into an effective method to modify carbon nanomaterials for various heterogeneous adsorption and catalytic oxidation systems, the active source regulated by intrinsic electron and spin structures is still obscure. Here, a series of nonmetallic element-doped (such as P, S, and Se) covalent triazine frameworks (CTFs) were constructed and applied to remove organic pollutants using the adsorption-photocatalysis process. The external mass transfer model (EMTM) and the homogeneous surface diffusion model (HSDM) were employed to describe the adsorption process. It was found that sulfur-doped CTF (S-CTF-1) showed a 25.6-fold increase in saturated adsorption capacity (554.7 μmol/g) and a 169.0-fold surge in photocatalytic kinetics (5.07 h), respectively, compared with the pristine CTF-1. A positive correlation between electron accumulation at the active site (N1 atom) and adsorption energy was further demonstrated with experimental results and theoretical calculations. Meanwhile, the photocatalytic degradation rates were greatly enhanced by forming a built-in electric field driven by spin polarization. In addition, S-CTF-1 still maintained a 98.3% removal of 2,2',4,4'-tetrahydroxybenzophenone (BP-2) micropollutants and 97.6% regeneration after six-cycle sequencing batch treatment in real water matrices. This work established a relation between electron and spin structures for adsorption and photocatalysis, paving a new way to design modified carbon nanomaterials to control OMPs.

摘要

水资源短缺危机的特点是存在有机微量污染物 (OMPs),这迫切需要新的材料和方法来应对。尽管杂原子掺杂已经发展成为一种有效方法,可以用于各种异相吸附和催化氧化体系来改性碳纳米材料,但对于受固有电子和自旋结构调控的活性源仍不清楚。在此,构建了一系列非金属元素掺杂(如 P、S 和 Se)的共价三嗪骨架(CTFs),并通过吸附-光催化过程应用于去除有机污染物。采用外部传质模型(EMTM)和均相表面扩散模型(HSDM)来描述吸附过程。结果发现,与原始 CTF-1 相比,硫掺杂 CTF(S-CTF-1)的饱和吸附容量(554.7 μmol/g)增加了 25.6 倍,光催化动力学(5.07 h)增加了 169.0 倍。实验结果和理论计算进一步证明了活性位点(N1 原子)处电子积累与吸附能之间存在正相关关系。同时,通过自旋极化形成的内置电场极大地增强了光催化降解速率。此外,S-CTF-1 在实际水基质中经过六次序批处理后,仍保持 98.3%的 2,2',4,4'-四羟基二苯甲酮 (BP-2) 微污染物去除率和 97.6%的再生率。这项工作建立了吸附和光催化中电子和自旋结构之间的关系,为设计改性碳纳米材料来控制 OMPs 开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验